↓ Skip to main content

Facile synthesis and characterizations of copper–zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu–ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies

Overview of attention for article published in Journal of Colloid & Interface Science, July 2014
Altmetric Badge

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Facile synthesis and characterizations of copper–zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu–ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies
Published in
Journal of Colloid & Interface Science, July 2014
DOI 10.1016/j.jcis.2014.07.005
Pubmed ID
Authors

Zhiguang Zhang, Xinyong Li, Qidong Zhao, Jun Ke, Yong Shi, Pancras Ndokoye, Lianzhou Wang

Abstract

Cu-ZnTPyP coordination polymer with hexagonal micro-lump and micro-prism morphologies has been successfully synthesized through a facile surfactant assisted self-assembly method based on Cu(OAc)2⋅2H2O and Zinc-5,10,15,20-tetra(4-pyridyl) porphyrin (ZnTPyP) in DMF/H2O solvent. The morphologies of three-dimensional micro-prisms and micro-lumps obtained at different concentrations of cetyltrimethylammonium bromide (CTAB) were investigated by scanning electronic microscopy. The compositions of the micro-prisms were studied by energy-dispersive spectra and inductively coupled plasma-atomic emission. X-ray diffraction analysis revealed a circular hexametric cage structure cross-linked by the main Zn-N axial coordination of the pyridyl ligands inside the micro-scale coordination polymers. The UV-Vis diffuse reflection spectroscopy revealed the formation of J-type aggregates in the both microstructures. The formation mechanism of Cu-ZnTPyP coordination polymer structure was investigated by varying CTAB concentration. Their surface photovoltage spectra indicated that the novel hexagonal micro-prism morphology of the coordination polymer displayed enhanced photo response under visible light, which is beneficial for exploiting the practical application of Cu-ZnTPyP compound.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 2 13%
Student > Master 2 13%
Researcher 2 13%
Student > Ph. D. Student 2 13%
Other 1 6%
Other 3 19%
Unknown 4 25%
Readers by discipline Count As %
Chemistry 6 38%
Chemical Engineering 2 13%
Materials Science 2 13%
Physics and Astronomy 1 6%
Unknown 5 31%