↓ Skip to main content

Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways

Overview of attention for article published in Current Genetics, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
37 Mendeley
Title
Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways
Published in
Current Genetics, August 2014
DOI 10.1007/s00294-014-0440-3
Pubmed ID
Authors

Arash Kianianmomeni, Armin Hallmann

Abstract

Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study show that Volvox photoreceptors are mostly expressed in a cell-type specific manner. This gives reason to believe that cell-type specific light-signaling pathways allow differential regulation of cellular and developmental processes in response to the environmental light cues.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
India 1 3%
United States 1 3%
Unknown 35 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 30%
Student > Ph. D. Student 10 27%
Professor > Associate Professor 5 14%
Student > Master 4 11%
Student > Bachelor 1 3%
Other 3 8%
Unknown 3 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 43%
Biochemistry, Genetics and Molecular Biology 9 24%
Physics and Astronomy 3 8%
Neuroscience 2 5%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 5 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2014.
All research outputs
#15,303,896
of 22,760,687 outputs
Outputs from Current Genetics
#855
of 1,203 outputs
Outputs of similar age
#133,642
of 231,138 outputs
Outputs of similar age from Current Genetics
#3
of 11 outputs
Altmetric has tracked 22,760,687 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,203 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 231,138 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.