↓ Skip to main content

β-adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling

Overview of attention for article published in Cell and Tissue Research, August 2014
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
39 Mendeley
Title
β-adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling
Published in
Cell and Tissue Research, August 2014
DOI 10.1007/s00441-014-1976-8
Pubmed ID
Authors

Fatemeh Sharifpanah, Fatjon Saliu, Mohamed M. Bekhite, Maria Wartenberg, Heinrich Sauer

Abstract

The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Bachelor 6 15%
Researcher 6 15%
Other 4 10%
Student > Master 3 8%
Other 8 21%
Unknown 5 13%
Readers by discipline Count As %
Medicine and Dentistry 11 28%
Agricultural and Biological Sciences 7 18%
Biochemistry, Genetics and Molecular Biology 4 10%
Engineering 4 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 4 10%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2014.
All research outputs
#19,236,357
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#1,706
of 2,279 outputs
Outputs of similar age
#170,753
of 237,669 outputs
Outputs of similar age from Cell and Tissue Research
#18
of 26 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 237,669 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.