↓ Skip to main content

New Lipoglycopeptides

Overview of attention for article published in Drugs, September 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users
patent
1 patent
wikipedia
4 Wikipedia pages

Citations

dimensions_citation
282 Dimensions

Readers on

mendeley
130 Mendeley
Title
New Lipoglycopeptides
Published in
Drugs, September 2012
DOI 10.2165/11534440-000000000-00000
Pubmed ID
Authors

George G. Zhanel, Divna Calic, Frank Schweizer, Sheryl Zelenitsky, Heather Adam, Philippe R. S. Lagacé-Wiens, Ethan Rubinstein, Alfred S. Gin, Daryl J. Hoban, James A. Karlowsky

Abstract

Dalbavancin, oritavancin and telavancin are semisynthetic lipoglycopeptides that demonstrate promise for the treatment of patients with infections caused by multi-drug-resistant Gram-positive pathogens. Each of these agents contains a heptapeptide core, common to all glycopeptides, which enables them to inhibit transglycosylation and transpeptidation (cell wall synthesis). Modifications to the heptapeptide core result in different in vitro activities for the three semisynthetic lipoglycopeptides. All three lipoglycopeptides contain lipophilic side chains, which prolong their half-life, help to anchor the agents to the cell membrane and increase their activity against Gram-positive cocci. In addition to inhibiting cell wall synthesis, telavancin and oritavancin are also able to disrupt bacterial membrane integrity and increase membrane permeability; oritavancin also inhibits RNA synthesis. Enterococci exhibiting the VanA phenotype (resistance to both vancomycin and teicoplanin) are resistant to both dalbavancin and telavancin, while oritavancin retains activity. Dalbavancin, oritavancin and telavancin exhibit activity against VanB vancomycin-resistant enterococci. All three lipoglycopeptides demonstrate potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis regardless of their susceptibility to meticillin, as well as Streptococcus spp. Both dalbavancin and telavancin are active against vancomycin-intermediate S. aureus (VISA), but display poor activity versus vancomycin-resistant S. aureus (VRSA). Oritavancin is active against both VISA and VRSA. Telavancin displays greater activity against Clostridium spp. than dalbavancin, oritavancin or vancomycin. The half-life of dalbavancin ranges from 147 to 258 hours, which allows for once-weekly dosing, the half-life of oritavancin of 393 hours may allow for one dose per treatment course, while telavancin requires daily administration. Dalbavancin and telavancin exhibit concentration-dependent activity and AUC/MIC (area under the concentration-time curve to minimum inhibitory concentration ratio) is the pharmacodynamic parameter that best describes their activities. Oritavancin's activity is also considered concentration-dependent in vitro, while in vivo its activity has been described by both concentration and time-dependent models; however, AUC/MIC is the pharmacodynamic parameter that best describes its activity. Clinical trials involving patients with complicated skin and skin structure infections (cSSSIs) have demonstrated that all three agents are as efficacious as comparators. The most common adverse effects reported with dalbavancin use included nausea, diarrhoea and constipation, while injection site reactions, fever and diarrhoea were commonly observed with oritavancin therapy. Patients administered telavancin frequently reported nausea, taste disturbance and insomnia. To date, no drug-drug interactions have been identified for dalbavancin, oritavancin or telavancin. All three of these agents are promising alternatives for the treatment of cSSSIs in cases where more economical options such as vancomycin have been ineffective, in cases of reduced vancomycin susceptibility or resistance, or where vancomycin use has been associated with adverse events.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 130 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United States 1 <1%
Slovakia 1 <1%
Unknown 127 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 16%
Researcher 16 12%
Student > Bachelor 16 12%
Student > Master 10 8%
Other 9 7%
Other 23 18%
Unknown 35 27%
Readers by discipline Count As %
Medicine and Dentistry 27 21%
Agricultural and Biological Sciences 17 13%
Biochemistry, Genetics and Molecular Biology 15 12%
Pharmacology, Toxicology and Pharmaceutical Science 12 9%
Chemistry 10 8%
Other 9 7%
Unknown 40 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2021.
All research outputs
#2,267,506
of 25,374,917 outputs
Outputs from Drugs
#250
of 3,464 outputs
Outputs of similar age
#15,058
of 188,986 outputs
Outputs of similar age from Drugs
#67
of 1,509 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,464 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 188,986 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 1,509 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.