↓ Skip to main content

Tumor-associated B-cells induce tumor heterogeneity and therapy resistance

Overview of attention for article published in Nature Communications, September 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

news
6 news outlets
twitter
8 X users
googleplus
1 Google+ user

Citations

dimensions_citation
110 Dimensions

Readers on

mendeley
202 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tumor-associated B-cells induce tumor heterogeneity and therapy resistance
Published in
Nature Communications, September 2017
DOI 10.1038/s41467-017-00452-4
Pubmed ID
Authors

Rajasekharan Somasundaram, Gao Zhang, Mizuho Fukunaga-Kalabis, Michela Perego, Clemens Krepler, Xiaowei Xu, Christine Wagner, Denitsa Hristova, Jie Zhang, Tian Tian, Zhi Wei, Qin Liu, Kanika Garg, Johannes Griss, Rufus Hards, Margarita Maurer, Christine Hafner, Marius Mayerhöfer, Georgios Karanikas, Ahmad Jalili, Verena Bauer-Pohl, Felix Weihsengruber, Klemens Rappersberger, Josef Koller, Roland Lang, Courtney Hudgens, Guo Chen, Michael Tetzlaff, Lawrence Wu, Dennie Tompers Frederick, Richard A. Scolyer, Georgina V. Long, Manashree Damle, Courtney Ellingsworth, Leon Grinman, Harry Choi, Brian J. Gavin, Margaret Dunagin, Arjun Raj, Nathalie Scholler, Laura Gross, Marilda Beqiri, Keiryn Bennett, Ian Watson, Helmut Schaider, Michael A. Davies, Jennifer Wargo, Brian J. Czerniecki, Lynn Schuchter, Dorothee Herlyn, Keith Flaherty, Meenhard Herlyn, Stephan N. Wagner

Abstract

In melanoma, therapies with inhibitors to oncogenic BRAF(V600E) are highly effective but responses are often short-lived due to the emergence of drug-resistant tumor subpopulations. We describe here a mechanism of acquired drug resistance through the tumor microenvironment, which is mediated by human tumor-associated B cells. Human melanoma cells constitutively produce the growth factor FGF-2, which activates tumor-infiltrating B cells to produce the growth factor IGF-1. B-cell-derived IGF-1 is critical for resistance of melanomas to BRAF and MEK inhibitors due to emergence of heterogeneous subpopulations and activation of FGFR-3. Consistently, resistance of melanomas to BRAF and/or MEK inhibitors is associated with increased CD20 and IGF-1 transcript levels in tumors and IGF-1 expression in tumor-associated B cells. Furthermore, first clinical data from a pilot trial in therapy-resistant metastatic melanoma patients show anti-tumor activity through B-cell depletion by anti-CD20 antibody. Our findings establish a mechanism of acquired therapy resistance through tumor-associated B cells with important clinical implications.Resistance to BRAFV600E inhibitors often occurs in melanoma patients. Here, the authors describe a potential mechanism of acquired drug resistance mediated by tumor-associated B cells-derived IGF-1.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 202 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 202 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 14%
Researcher 28 14%
Student > Master 28 14%
Student > Bachelor 18 9%
Student > Doctoral Student 12 6%
Other 36 18%
Unknown 52 26%
Readers by discipline Count As %
Medicine and Dentistry 39 19%
Biochemistry, Genetics and Molecular Biology 30 15%
Agricultural and Biological Sciences 29 14%
Immunology and Microbiology 28 14%
Pharmacology, Toxicology and Pharmaceutical Science 6 3%
Other 18 9%
Unknown 52 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 46. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2018.
All research outputs
#901,024
of 25,378,162 outputs
Outputs from Nature Communications
#14,957
of 56,643 outputs
Outputs of similar age
#18,448
of 327,371 outputs
Outputs of similar age from Nature Communications
#352
of 1,086 outputs
Altmetric has tracked 25,378,162 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 56,643 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 55.7. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,371 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 1,086 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.