↓ Skip to main content

Coping with Phantom Limb Pain

Overview of attention for article published in Molecular Neurobiology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
222 Mendeley
Title
Coping with Phantom Limb Pain
Published in
Molecular Neurobiology, September 2017
DOI 10.1007/s12035-017-0718-9
Pubmed ID
Authors

Damien P. Kuffler

Abstract

Phantom limb pain is a chronic neuropathic pain that develops in 45-85% of patients who undergo major amputations of the upper and lower extremities and appears predominantly during two time frames following an amputation: the first month and later about 1 year. Although in most patients the frequency and intensity of pain diminish over time, severe pain persists in about 5-10%. It has been proposed that factors in both the peripheral and central nervous systems play major roles in triggering the development and maintenance of pain associated with extremity amputations. Chronic pain is physically and mentally debilitating, affecting an individual's capacity for self-care, but also diminishing an individual's daily capacity for personal and economic independence. In addition, the pain may lead to depression and feelings of hopelessness. A National Center for Biotechnology Information study found that in the USA alone, the annual cost of dealing with neuropathic pain is more than $600 billion, with an estimated 20 million people in the USA suffering from this condition. Although the pain can be reduced by antiepileptic drugs and analgesics, they are frequently ineffective or their side effects preclude their use. The optimal approach for eliminating neuropathic pain and improving individuals' quality of life is the development of novel techniques that permanently prevent the development and maintenance of neuropathic pain, or that eliminate the pain once it has developed. What is still required is understanding when and where an effective novel technique must be applied, such as onto the nerve stump of the transected peripheral axons, dorsal root ganglion neurons, spinal cord, or cortex to induce the desired influences. This review, the second of two in this journal volume, examines the techniques that may be capable of reducing or eliminating chronic neuropathic pain once it has developed. Such an understanding will improve amputees' quality of life by blocking the mechanisms that trigger and/or maintain PLP and chronic neuropathic pain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 222 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 222 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 36 16%
Student > Master 24 11%
Researcher 21 9%
Other 18 8%
Student > Ph. D. Student 17 8%
Other 30 14%
Unknown 76 34%
Readers by discipline Count As %
Medicine and Dentistry 50 23%
Nursing and Health Professions 30 14%
Neuroscience 14 6%
Psychology 13 6%
Agricultural and Biological Sciences 6 3%
Other 27 12%
Unknown 82 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2017.
All research outputs
#18,572,036
of 23,002,898 outputs
Outputs from Molecular Neurobiology
#2,486
of 3,486 outputs
Outputs of similar age
#244,202
of 318,311 outputs
Outputs of similar age from Molecular Neurobiology
#41
of 77 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,486 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,311 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.