↓ Skip to main content

Role of BDNF and neurotrophic receptors in human inner ear development

Overview of attention for article published in Cell and Tissue Research, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
60 Mendeley
Title
Role of BDNF and neurotrophic receptors in human inner ear development
Published in
Cell and Tissue Research, September 2017
DOI 10.1007/s00441-017-2686-9
Pubmed ID
Authors

L. Johnson Chacko, M. J. F. Blumer, E. Pechriggl, H. Rask-Andersen, W. Dietl, A. Haim, H. Fritsch, R. Glueckert, J. Dudas, A. Schrott-Fischer

Abstract

The expression patterns of the neurotrophin, brain-derived neurotrophic factor, BDNF, and the neurotrophic receptors-p75NTR and Trk receptors-in the developing human fetal inner ear between the gestational weeks (GW) 9 to 12 are examined via in situ hybridization and immunohistochemistry. BDNF mRNA expression was highest in the cochlea at GW 9 but declined in the course of development. In contrast to embryonic murine specimens, a decline in BDNF expression from the apical to the basal turn of the cochlea could not be observed. p75NTR immunostaining was most prominent in the nerve fibers that penetrate into the sensory epithelia of the cochlea, the urticule and the saccule as gestational age progresses. TrkB and TrkC expression intensified towards GW 12, at which point the BDNF mRNA localization was at its lowest. TrkA expression was limited to fiber subpopulations of the facial nerve at GW 10. In the adult human inner ear, we observed BDNF mRNA expression in the apical poles of the cochlear hair cells and supporting cells, while in the adult human utricle, the expression was localized in the vestibular hair cells. We demonstrate the highly specific staining patterns of BDNF mRNA and its putative receptors over a developmental period in which multiple hearing disorders are manifested. Our findings suggest that BDNF and neurotrophin receptors are important players during early human inner ear development. In particular, they seem to be important for the survival of the afferent sensory neurons.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 18%
Student > Ph. D. Student 9 15%
Student > Bachelor 7 12%
Student > Doctoral Student 5 8%
Other 4 7%
Other 9 15%
Unknown 15 25%
Readers by discipline Count As %
Neuroscience 10 17%
Medicine and Dentistry 10 17%
Biochemistry, Genetics and Molecular Biology 8 13%
Agricultural and Biological Sciences 6 10%
Engineering 3 5%
Other 5 8%
Unknown 18 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 September 2017.
All research outputs
#21,178,329
of 23,839,820 outputs
Outputs from Cell and Tissue Research
#2,002
of 2,279 outputs
Outputs of similar age
#280,336
of 320,000 outputs
Outputs of similar age from Cell and Tissue Research
#21
of 32 outputs
Altmetric has tracked 23,839,820 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,279 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,000 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 32 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.