↓ Skip to main content

Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: An automated MRI structural connectivity study

Overview of attention for article published in NeuroImage, August 2011
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

blogs
1 blog

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
117 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: An automated MRI structural connectivity study
Published in
NeuroImage, August 2011
DOI 10.1016/j.neuroimage.2011.08.054
Pubmed ID
Authors

Stephen Rose, Kerstin Pannek, Christopher Bell, Fusun Baumann, Nicole Hutchinson, Alan Coulthard, Pamela McCombe, Robert Henderson

Abstract

Although the pathogenesis of amyotrophic lateral sclerosis (ALS) is uncertain, there is mounting neuroimaging evidence to suggest a mechanism involving the degeneration of multiple white matter (WM) motor and extramotor neural networks. This insight has been achieved, in part, by using MRI Diffusion Tensor Imaging (DTI) and the voxelwise analysis of anisotropy indices, along with DTI tractography to determine which specific motor pathways are involved with ALS pathology. Automated MRI structural connectivity analyses, which probe WM connections linking various functionally discrete cortical regions, have the potential to provide novel information about degenerative processes within multiple white matter (WM) pathways. Our hypothesis is that measures of altered intra- and interhemispheric structural connectivity of the primary motor and somatosensory cortex will provide an improved assessment of corticomotor involvement in ALS. To test this hypothesis, we acquired High Angular Resolution Diffusion Imaging (HARDI) scans along with high resolution structural images (sMRI) on 15 patients with clinical evidence of upper and lower motor neuron involvement, and 20 matched control participants. Whole brain probabilistic tractography was applied to define specific WM pathways connecting discrete corticomotor targets generated from anatomical parcellation of sMRI of the brain. The integrity of these connections was interrogated by comparing the mean fractional anisotropy (FA) derived for each WM pathway. To assist in the interpretation of results, we measured the reproducibility of the FA summary measures over time (6months) in control participants. We also incorporated into our analysis pipeline the evaluation and replacement of outlier voxels due to head motion and physiological noise. When assessing corticomotor connectivity, we found a significant reduction in mean FA within a number of intra- and interhemispheric motor pathways in ALS patients. The abnormal intrahemispheric pathways include the corticospinal tracts involving the left and right precentral gyri (lh.preCG, rh.preCG) and brainstem (bs); right postcentral gyrus (rh.postCG) and bs; lh.preCG and left posterior cingulate gyrus (lh.PCG); rh.preCG and right posterior cingulate gyrus (rh.PCG); and the rh.preCG and right paracentral gyrus (rh.paraCG). The abnormal interhemispheric pathways included the lh.preCG and rh.preCG; lh.preCG and rh.paraCG; lh.preCG and right superior frontal gyrus (rh.supFG); lh.preCG and rh.postCG; rh.preCG and left paracentral gyrus (lh.paraCG); rh.preCG and left superior frontal gyrus (lh.supFG); and the rh.preCG and left caudal middle frontal gyrus (lh.caudMF). The reproducibility of the measurement of these pathways was high (variation less than 5%). Maps of the outlier rejection voxels, revealed clusters within the corpus callosum and corticospinal projections. This finding highlights the importance of correcting for motion artefacts and physiological noise when studying clinical populations. Our novel findings, many of which are consistent with known pathology, show extensive involvement and degeneration of multiple corticomotor pathways in patients with upper and lower motor neuron signs and provide support for the use of automated structural connectivity techniques for studying neurodegenerative disease processes.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 117 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 5%
Korea, Republic of 2 2%
Italy 2 2%
United Kingdom 2 2%
Spain 1 <1%
Germany 1 <1%
Unknown 103 88%

Demographic breakdown

Readers by professional status Count As %
Researcher 28 24%
Student > Ph. D. Student 17 15%
Professor > Associate Professor 13 11%
Student > Master 12 10%
Student > Doctoral Student 9 8%
Other 22 19%
Unknown 16 14%
Readers by discipline Count As %
Medicine and Dentistry 36 31%
Neuroscience 19 16%
Agricultural and Biological Sciences 13 11%
Psychology 11 9%
Engineering 10 9%
Other 11 9%
Unknown 17 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 August 2014.
All research outputs
#6,526,425
of 25,374,917 outputs
Outputs from NeuroImage
#5,211
of 12,205 outputs
Outputs of similar age
#36,056
of 134,833 outputs
Outputs of similar age from NeuroImage
#48
of 163 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 12,205 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.6. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 134,833 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 163 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.