↓ Skip to main content

Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type…

Overview of attention for article published in Stem Cell Reviews and Reports, October 2010
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
patent
2 patents
facebook
1 Facebook page

Citations

dimensions_citation
113 Dimensions

Readers on

mendeley
132 Mendeley
Title
Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes
Published in
Stem Cell Reviews and Reports, October 2010
DOI 10.1007/s12015-010-9196-4
Pubmed ID
Authors

Rita Anzalone, Melania Lo Iacono, Tiziana Loria, Antonino Di Stefano, Pantaleo Giannuzzi, Felicia Farina, Giampiero La Rocca

Abstract

Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton's jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 132 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 <1%
Spain 1 <1%
China 1 <1%
Unknown 129 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 28 21%
Researcher 25 19%
Student > Bachelor 19 14%
Professor > Associate Professor 10 8%
Student > Master 10 8%
Other 28 21%
Unknown 12 9%
Readers by discipline Count As %
Medicine and Dentistry 41 31%
Agricultural and Biological Sciences 41 31%
Biochemistry, Genetics and Molecular Biology 14 11%
Engineering 5 4%
Neuroscience 2 2%
Other 14 11%
Unknown 15 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2022.
All research outputs
#7,205,295
of 25,374,647 outputs
Outputs from Stem Cell Reviews and Reports
#310
of 1,036 outputs
Outputs of similar age
#34,421
of 108,621 outputs
Outputs of similar age from Stem Cell Reviews and Reports
#6
of 11 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 1,036 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 108,621 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.