↓ Skip to main content

Relative Seed and Fruit Toxicity of the Australian Cycads Macrozamia miquelii and Cycas ophiolitica: Further Evidence for a Megafaunal Seed Dispersal Syndrome in Cycads, and Its Possible Antiquity

Overview of attention for article published in Journal of Chemical Ecology, August 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • High Attention Score compared to outputs of the same age and source (86th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page
wikipedia
7 Wikipedia pages

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Relative Seed and Fruit Toxicity of the Australian Cycads Macrozamia miquelii and Cycas ophiolitica: Further Evidence for a Megafaunal Seed Dispersal Syndrome in Cycads, and Its Possible Antiquity
Published in
Journal of Chemical Ecology, August 2014
DOI 10.1007/s10886-014-0490-5
Pubmed ID
Authors

J. A. Hall, G. H. Walter

Abstract

An apparent contradiction in the ecology of cycad plants is that their seeds are known to be highly poisonous, and yet they seem well adapted for seed dispersal by animals, as shown by their visually conspicuous seed cones and large seeds presented within a brightly colored fleshy "fruit" of sarcotesta. We tested if this sarcotesta could function as a reward for cycad seed dispersal fauna, by establishing if the toxic compound cycasin, known from the seeds, is absent from the sarcotesta. The Australian cycads Macrozamia miquelii and Cycas ophiolitica were tested (N = 10 individuals per species) using gas chromatography / mass spectrometry. Cycasin was detected at 0.34 % (fresh weight) in seed endosperm of M. miquelii and 0.28 % (fresh weight) in seed endosperm of C. ophiolitica. Cycasin was absent from the sarcotesta of the same propagules (none detected in the case of M. miquelii, and trace quantities detected in sarcotesta of only four of the ten C. ophiolitica propagules). This laboratory finding was supported by field observations of native animals eating the sarcotesta of these cycads but discarding the toxic seed intact. These results suggest cycads are adapted for dispersal fauna capable of swallowing the large, heavy propagules whole, digesting the non-toxic sarcotesta flesh internally, and then voiding the toxic seed intact. Megafauna species such as extant emus or cassowaries, or extinct Pleistocene megafauna such as Genyornis, are plausible candidates for such dispersal. Cycads are an ancient lineage, and the possible antiquity of their megafaunal seed dispersal adaptations are discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Spain 1 2%
Unknown 40 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 17%
Student > Ph. D. Student 6 14%
Student > Bachelor 6 14%
Professor 4 10%
Student > Master 4 10%
Other 10 24%
Unknown 5 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 48%
Environmental Science 6 14%
Medicine and Dentistry 2 5%
Unspecified 1 2%
Biochemistry, Genetics and Molecular Biology 1 2%
Other 5 12%
Unknown 7 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 January 2024.
All research outputs
#7,143,599
of 25,658,139 outputs
Outputs from Journal of Chemical Ecology
#560
of 2,177 outputs
Outputs of similar age
#64,645
of 248,266 outputs
Outputs of similar age from Journal of Chemical Ecology
#2
of 15 outputs
Altmetric has tracked 25,658,139 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 2,177 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 248,266 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 86% of its contemporaries.