↓ Skip to main content

Mathematical description of drug–target interactions: application to biologics that bind to targets with two binding sites

Overview of attention for article published in Journal of Pharmacokinetics and Pharmacodynamics, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
14 Mendeley
Title
Mathematical description of drug–target interactions: application to biologics that bind to targets with two binding sites
Published in
Journal of Pharmacokinetics and Pharmacodynamics, September 2017
DOI 10.1007/s10928-017-9546-9
Pubmed ID
Authors

Leonid Gibiansky, Ekaterina Gibiansky

Abstract

The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Other 3 21%
Student > Ph. D. Student 3 21%
Student > Bachelor 1 7%
Student > Postgraduate 1 7%
Other 0 0%
Unknown 2 14%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 7 50%
Medicine and Dentistry 4 29%
Neuroscience 1 7%
Unknown 2 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 June 2018.
All research outputs
#16,584,977
of 25,382,440 outputs
Outputs from Journal of Pharmacokinetics and Pharmacodynamics
#319
of 477 outputs
Outputs of similar age
#185,768
of 309,735 outputs
Outputs of similar age from Journal of Pharmacokinetics and Pharmacodynamics
#6
of 8 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 477 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,735 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.