↓ Skip to main content

Gibbon genome and the fast karyotype evolution of small apes

Overview of attention for article published in Nature, September 2014
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

news
20 news outlets
blogs
5 blogs
twitter
145 X users
weibo
4 weibo users
facebook
17 Facebook pages
wikipedia
11 Wikipedia pages
googleplus
3 Google+ users

Citations

dimensions_citation
290 Dimensions

Readers on

mendeley
545 Mendeley
citeulike
7 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gibbon genome and the fast karyotype evolution of small apes
Published in
Nature, September 2014
DOI 10.1038/nature13679
Pubmed ID
Authors

Lucia Carbone, R. Alan Harris, Sante Gnerre, Krishna R. Veeramah, Belen Lorente-Galdos, John Huddleston, Thomas J. Meyer, Javier Herrero, Christian Roos, Bronwen Aken, Fabio Anaclerio, Nicoletta Archidiacono, Carl Baker, Daniel Barrell, Mark A. Batzer, Kathryn Beal, Antoine Blancher, Craig L. Bohrson, Markus Brameier, Michael S. Campbell, Oronzo Capozzi, Claudio Casola, Giorgia Chiatante, Andrew Cree, Annette Damert, Pieter J. de Jong, Laura Dumas, Marcos Fernandez-Callejo, Paul Flicek, Nina V. Fuchs, Ivo Gut, Marta Gut, Matthew W. Hahn, Jessica Hernandez-Rodriguez, LaDeana W. Hillier, Robert Hubley, Bianca Ianc, Zsuzsanna Izsvák, Nina G. Jablonski, Laurel M. Johnstone, Anis Karimpour-Fard, Miriam K. Konkel, Dennis Kostka, Nathan H. Lazar, Sandra L. Lee, Lora R. Lewis, Yue Liu, Devin P. Locke, Swapan Mallick, Fernando L. Mendez, Matthieu Muffato, Lynne V. Nazareth, Kimberly A. Nevonen, Majesta O’Bleness, Cornelia Ochis, Duncan T. Odom, Katherine S. Pollard, Javier Quilez, David Reich, Mariano Rocchi, Gerald G. Schumann, Stephen Searle, James M. Sikela, Gabriella Skollar, Arian Smit, Kemal Sonmez, Boudewijn ten Hallers, Elizabeth Terhune, Gregg W. C. Thomas, Brygg Ullmer, Mario Ventura, Jerilyn A. Walker, Jeffrey D. Wall, Lutz Walter, Michelle C. Ward, Sarah J. Wheelan, Christopher W. Whelan, Simon White, Larry J. Wilhelm, August E. Woerner, Mark Yandell, Baoli Zhu, Michael F. Hammer, Tomas Marques-Bonet, Evan E. Eichler, Lucinda Fulton, Catrina Fronick, Donna M. Muzny, Wesley C. Warren, Kim C. Worley, Jeffrey Rogers, Richard K. Wilson, Richard A. Gibbs

Abstract

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.

X Demographics

X Demographics

The data shown below were collected from the profiles of 145 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 545 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 16 3%
Germany 2 <1%
Spain 2 <1%
United Kingdom 2 <1%
Norway 1 <1%
Korea, Republic of 1 <1%
Switzerland 1 <1%
Canada 1 <1%
Taiwan 1 <1%
Other 5 <1%
Unknown 513 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 135 25%
Researcher 111 20%
Student > Bachelor 54 10%
Student > Master 54 10%
Student > Doctoral Student 30 6%
Other 94 17%
Unknown 67 12%
Readers by discipline Count As %
Agricultural and Biological Sciences 266 49%
Biochemistry, Genetics and Molecular Biology 117 21%
Social Sciences 15 3%
Environmental Science 13 2%
Medicine and Dentistry 9 2%
Other 46 8%
Unknown 79 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 280. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2023.
All research outputs
#129,201
of 26,017,215 outputs
Outputs from Nature
#8,462
of 99,074 outputs
Outputs of similar age
#1,056
of 253,785 outputs
Outputs of similar age from Nature
#115
of 979 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 99,074 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 102.3. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 253,785 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 979 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 88% of its contemporaries.