↓ Skip to main content

Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator

Overview of attention for article published in Oecologia, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
23 Mendeley
Title
Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator
Published in
Oecologia, September 2014
DOI 10.1007/s00442-014-2998-3
Pubmed ID
Authors

Todd Wojtowicz, Zacchaeus G. Compson, Louis J. Lamit, Thomas G. Whitham, Catherine A. Gehring

Abstract

The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0-100 and 100-200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300%; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 9%
Unknown 21 91%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 26%
Researcher 4 17%
Student > Ph. D. Student 3 13%
Professor > Associate Professor 2 9%
Professor 2 9%
Other 3 13%
Unknown 3 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 35%
Environmental Science 6 26%
Nursing and Health Professions 1 4%
Earth and Planetary Sciences 1 4%
Sports and Recreations 1 4%
Other 2 9%
Unknown 4 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 September 2014.
All research outputs
#14,658,020
of 22,763,032 outputs
Outputs from Oecologia
#3,144
of 4,210 outputs
Outputs of similar age
#129,413
of 238,986 outputs
Outputs of similar age from Oecologia
#44
of 67 outputs
Altmetric has tracked 22,763,032 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,210 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 238,986 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.