↓ Skip to main content

Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding

Overview of attention for article published in Biofouling, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding
Published in
Biofouling, September 2017
DOI 10.1080/08927014.2017.1369050
Pubmed ID
Authors

Barry I. Cayford, Guangming Jiang, Jurg Keller, Gene Tyson, Philip L. Bond

Abstract

This study investigated the variation in microbially induced concrete corrosion communities at different circumferential locations of a real sewer pipe and the effects of a wastewater flooding event on the community. Three distinct microbial community groups were found in different corrosion samples. The physico-chemical properties of the corrosion layers and the microbial communities were distinct for the cross-sectional positions within the pipe, ie ceiling, wall and tidal zones. The microbial communities detected from the same positions in the pipe were consistent over the length of the pipe, as well as being consistent between the replicate pipes. The dominating ceiling communities were members of the bacterial orders Rhodospirillales, Acidithiobacillales, Actinomycetales, Xanthomonadales and Acidobacteriales. The wall communities were composed of members of the Xanthomonadales, Hydrogenophilales, Chromatiales and Sphingobacteriales. The tidal zones were dominated by eight bacterial and one archaeal order, with the common physiological trait of anaerobic metabolism. Sewage flooding within the sewer system did not change the tidal and wall communities, although the corrosion communities in ceiling samples were notably different, becoming more similar to the wall and tidal samples. This suggests that sewage flooding has a significant impact on the corrosion community in sewers.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 18%
Student > Ph. D. Student 5 15%
Student > Bachelor 4 12%
Student > Master 4 12%
Other 3 9%
Other 6 18%
Unknown 5 15%
Readers by discipline Count As %
Engineering 11 33%
Agricultural and Biological Sciences 5 15%
Environmental Science 3 9%
Biochemistry, Genetics and Molecular Biology 2 6%
Computer Science 2 6%
Other 4 12%
Unknown 6 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 February 2018.
All research outputs
#4,117,252
of 23,003,906 outputs
Outputs from Biofouling
#51
of 755 outputs
Outputs of similar age
#73,987
of 321,004 outputs
Outputs of similar age from Biofouling
#3
of 15 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 755 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,004 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.