↓ Skip to main content

Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice

Overview of attention for article published in Developmental Biology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice
Published in
Developmental Biology, September 2014
DOI 10.1016/j.ydbio.2014.08.037
Pubmed ID
Authors

Elanor N Wainwright, Terje Svingen, Ee Ting Ng, Carol Wicking, Peter Koopman

Abstract

The issues of whether and how some organs coordinate their size and shape with the blueprint of the embryo axis, while others appear to regulate their morphogenesis autonomously, remain poorly understood. Mutations in Ift144, encoding a component of the trafficking machinery of primary cilia assembly, result in a range of embryo patterning defects, affecting the limbs, skeleton and neural system. Here, we show that embryos of the mouse mutant Ift144(twt) develop gonads that are larger than wild-type. Investigation of the early patterning of the urogenital ridge revealed that the anterior-posterior domain of the gonad/mesonephros was extended at 10.5dpc, with no change in the length of the metanephros. In XY embryos, this extension resulted in an increase in testis cord number. Moreover, we observed a concomitant extension of the trunk axis in both sexes, with no change in the length of the tail domain or somite number. Our findings support a model in which: (1) primary cilia regulate embryonic trunk elongation; (2) the length of the trunk axis determines the size of the urogenital ridges; and (3) the gonad domain is partitioned into a number of testis cords that depends on the available space, rather than being divided a predetermined number of times to generate a specific number of cords.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 28 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 24%
Student > Ph. D. Student 6 21%
Student > Master 5 17%
Student > Bachelor 4 14%
Student > Doctoral Student 2 7%
Other 3 10%
Unknown 2 7%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 41%
Biochemistry, Genetics and Molecular Biology 6 21%
Medicine and Dentistry 3 10%
Veterinary Science and Veterinary Medicine 1 3%
Social Sciences 1 3%
Other 1 3%
Unknown 5 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2014.
All research outputs
#17,286,379
of 25,374,917 outputs
Outputs from Developmental Biology
#4,324
of 5,557 outputs
Outputs of similar age
#147,541
of 246,376 outputs
Outputs of similar age from Developmental Biology
#34
of 68 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,557 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,376 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 68 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.