↓ Skip to main content

Capsaicin and N-Arachidonoyl-dopamine (NADA) Decrease Tension by Activating Both Cannabinoid and Vanilloid Receptors in Fast Skeletal Muscle Fibers of the Frog

Overview of attention for article published in The Journal of Membrane Biology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
27 Mendeley
Title
Capsaicin and N-Arachidonoyl-dopamine (NADA) Decrease Tension by Activating Both Cannabinoid and Vanilloid Receptors in Fast Skeletal Muscle Fibers of the Frog
Published in
The Journal of Membrane Biology, September 2014
DOI 10.1007/s00232-014-9727-z
Pubmed ID
Authors

Xóchitl Trujillo, Mónica Ortiz-Mesina, Tannia Uribe, Elena Castro, Rocío Montoya-Pérez, Zorayda Urzúa, Alfredo Feria-Velasco, Miguel Huerta

Abstract

Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3 % of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 26 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 22%
Student > Bachelor 5 19%
Other 4 15%
Researcher 3 11%
Student > Master 3 11%
Other 3 11%
Unknown 3 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 33%
Medicine and Dentistry 6 22%
Biochemistry, Genetics and Molecular Biology 4 15%
Neuroscience 3 11%
Environmental Science 1 4%
Other 2 7%
Unknown 2 7%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 June 2017.
All research outputs
#15,372,299
of 23,806,312 outputs
Outputs from The Journal of Membrane Biology
#602
of 803 outputs
Outputs of similar age
#138,211
of 251,117 outputs
Outputs of similar age from The Journal of Membrane Biology
#6
of 11 outputs
Altmetric has tracked 23,806,312 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 803 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 251,117 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.