↓ Skip to main content

Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway

Overview of attention for article published in Molecular Neurobiology, October 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
65 Mendeley
Title
Photobiomodulation Therapy Improves Acute Inflammatory Response in Mice: the Role of Cannabinoid Receptors/ATP-Sensitive K+ Channel/p38-MAPK Signalling Pathway
Published in
Molecular Neurobiology, October 2017
DOI 10.1007/s12035-017-0792-z
Pubmed ID
Authors

Laís M. S. Neves, Elaine C. D. Gonçalves, Juliana Cavalli, Graziela Vieira, Larissa R. Laurindo, Róli R. Simões, Igor S. Coelho, Adair R. S. Santos, Alexandre M. Marcolino, Maíra Cola, Rafael C. Dutra

Abstract

Although photobiomodulation therapy (PBM) has been applied clinically for the treatment of pain and inflammation, wound healing, sports and soft tissue injuries, as well as to repair injured spinal cords and peripheral nerves, it remains unclear which molecular substrates (receptor) are implicated in the cellular mechanisms of PBM. Here, we reported that PBM (660 nm, 30 mW, 0.06 cm(2), 50 J/cm(2), plantar irradiation) significantly inhibited carrageenan-induced paw oedema, but not noxious thermal response, through positive modulation to both CB1 and CB2 cannabinoid receptors. The use of CB1 antagonist AM281 or CB2 antagonist AM630 significantly reversed the anti-inflammatory effect of PBM. Analysis of signalling pathway downstream of cannabinoid receptors activation reveals that anti-inflammatory effects of PBM depend, in great extent, on its ability to activate ATP-dependent K(+) channels and p38 mitogen-activated protein kinase. Moreover, PBM therapy significantly reduced the levels of pro-inflammatory cytokine IL-6 in both paw and spinal cord, and restored the reduction of the level of anti-inflammatory cytokine IL-10 in spinal cord after carrageenan injection. Unlike the potent cannabinoid receptor agonist (WIN 55212-2), PBM did not exert any CNS-mediated effects in the tetrad assay. Finally, PBM does not reduce inflammation and noxious thermal response induced by LPS and zymosan, a TLR4 and TLR2/dectin-1 ligand, respectively. Thus, cannabinoid receptors and, possibly, the endocannabinoid system, represent an important site of action of PBM that opens the possibility of complementary and nonpsychotropic therapeutic interventions in clinical practice. Graphical Abstract ᅟ.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 65 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 65 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 17%
Student > Master 9 14%
Student > Ph. D. Student 5 8%
Other 3 5%
Professor 3 5%
Other 12 18%
Unknown 22 34%
Readers by discipline Count As %
Medicine and Dentistry 13 20%
Nursing and Health Professions 7 11%
Neuroscience 6 9%
Unspecified 4 6%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 8 12%
Unknown 25 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2017.
All research outputs
#20,449,496
of 23,005,189 outputs
Outputs from Molecular Neurobiology
#2,819
of 3,486 outputs
Outputs of similar age
#281,876
of 323,110 outputs
Outputs of similar age from Molecular Neurobiology
#54
of 78 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,486 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,110 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.