↓ Skip to main content

Computationally efficient map construction in the presence of segregation distortion

Overview of attention for article published in Theoretical and Applied Genetics, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Computationally efficient map construction in the presence of segregation distortion
Published in
Theoretical and Applied Genetics, September 2014
DOI 10.1007/s00122-014-2401-0
Pubmed ID
Authors

Rohan Shah, Colin R. Cavanagh, B. Emma Huang

Abstract

We present a novel estimator for map construction in the presence of segregation distortion which is highly computationally efficient. For multi-parental designs this estimator outperforms methods that do not account for segregation distortion, at no extra computational cost. Inclusion of genetic markers exhibiting segregation distortion in a linkage map can result in biased estimates of genetic distance and distortion of map positions. Removal of distorted markers is hence a typical filtering criterion; however, this may result in exclusion of biologically interesting regions of the genome such as introgressions and translocations. Estimation of additional parameters characterizing the distortion is computationally slow, as it relies on estimation via the Expectation Maximization algorithm or a higher dimensional numerical optimisation. We propose a robust M-estimator (RM) capable of handling tens of thousands of distorted markers from a single linkage group. We show via simulation that for multi-parental designs the RM estimator can perform much better than uncorrected estimation, at no extra computational cost. We then apply the RM estimator to chromosome 2B in wheat in a multi-parent population segregating for the Sr36 introgression, a known transmission distorter. The resulting map contains over 700 markers, and is consistent with maps constructed from crosses which do not exhibit segregation distortion.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Paraguay 1 5%
Benin 1 5%
France 1 5%
Unknown 18 86%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 43%
Researcher 6 29%
Student > Master 2 10%
Student > Doctoral Student 1 5%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 67%
Biochemistry, Genetics and Molecular Biology 1 5%
Environmental Science 1 5%
Business, Management and Accounting 1 5%
Engineering 1 5%
Other 0 0%
Unknown 3 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2015.
All research outputs
#16,031,680
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#2,892
of 3,565 outputs
Outputs of similar age
#149,234
of 254,211 outputs
Outputs of similar age from Theoretical and Applied Genetics
#22
of 40 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 254,211 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.