↓ Skip to main content

Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition

Overview of attention for article published in Pflügers Archiv - European Journal of Physiology, October 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
13 Mendeley
Title
Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition
Published in
Pflügers Archiv - European Journal of Physiology, October 2017
DOI 10.1007/s00424-017-2072-1
Pubmed ID
Authors

Joohan Woo, Young Keul Jun, Yin-Hua Zhang, Joo Hyun Nam, Dong Hoon Shin, Sung Joon Kim

Abstract

TWIK-related two-pore domain K(+) channels (TREKs) are regulated by intracellular pH (pHi) and Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Previously, Glu(306) in proximal C-terminal (pCt) of mouse TREK-1 was identified as the pHi-sensing residue. The direction of PI(4,5)P2 sensitivity is controversial, and we have recently shown that TREKs are inhibited by intracellular ATP via endogenous PI(4,5)P2 formation. Here we investigate the anionic and cationic residues of pCt for the pHi and ATP-sensitivity in human TREK-2 (hTREK-2). In inside-out patch clamp recordings (ITREK-2,i-o), acidic pHi-induced activation was absent in E332A and was partly attenuated in E335A. Neutralization of cationic Lys (K330A) also eliminated the acidic pHi sensitivity of ITREK-2,i-o. Unlike the inhibition of wild-type (WT) ITREK-2,i-o by intracellular ATP, neither E332A nor K330A was sensitive to ATP. Nevertheless, exogenous PI(4,5)P2 (10 μM) abolished ITREK-2 i-o in all the above mutants as well as in WT, indicating unspecific inhibition by exogenous PI(4,5)P2. In whole-cell recordings of TREK-2 (ITREK-2,w-c), K330A and E332A showed higher or fully active basal activity, showing attenuated or insignificant activation by 2-APB, arachidonic acid, or acidic pHe 6.9. ITREK-1,w-c of WT is largely suppressed by pHe 6.9, and the inhibition is slightly attenuated in K312A and E315A. The results show concerted roles of the oppositely charged Lys and Glu in pCt for the ATP-dependent low basal activity and pHi sensitivity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Professor > Associate Professor 2 15%
Researcher 2 15%
Student > Master 2 15%
Unknown 4 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 46%
Agricultural and Biological Sciences 1 8%
Neuroscience 1 8%
Medicine and Dentistry 1 8%
Unknown 4 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2017.
All research outputs
#16,049,105
of 23,818,521 outputs
Outputs from Pflügers Archiv - European Journal of Physiology
#1,378
of 1,973 outputs
Outputs of similar age
#205,468
of 326,196 outputs
Outputs of similar age from Pflügers Archiv - European Journal of Physiology
#9
of 23 outputs
Altmetric has tracked 23,818,521 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,973 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,196 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.