↓ Skip to main content

A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

Overview of attention for article published in Nature Communications, October 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
14 news outlets
blogs
3 blogs
twitter
13 X users
facebook
8 Facebook pages
wikipedia
1 Wikipedia page
googleplus
1 Google+ user

Citations

dimensions_citation
115 Dimensions

Readers on

mendeley
127 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
Published in
Nature Communications, October 2017
DOI 10.1038/s41467-017-00595-4
Pubmed ID
Authors

Michael R. Bowl, Michelle M. Simon, Neil J. Ingham, Simon Greenaway, Luis Santos, Heather Cater, Sarah Taylor, Jeremy Mason, Natalja Kurbatova, Selina Pearson, Lynette R. Bower, Dave A. Clary, Hamid Meziane, Patrick Reilly, Osamu Minowa, Lois Kelsey, The International Mouse Phenotyping Consortium, Glauco P. Tocchini-Valentini, Xiang Gao, Allan Bradley, William C. Skarnes, Mark Moore, Arthur L. Beaudet, Monica J. Justice, John Seavitt, Mary E. Dickinson, Wolfgang Wurst, Martin Hrabe de Angelis, Yann Herault, Shigeharu Wakana, Lauryl M. J. Nutter, Ann M. Flenniken, Colin McKerlie, Stephen A. Murray, Karen L. Svenson, Robert E. Braun, David B. West, K. C. Kent Lloyd, David J. Adams, Jacqui White, Natasha Karp, Paul Flicek, Damian Smedley, Terrence F. Meehan, Helen E. Parkinson, Lydia M. Teboul, Sara Wells, Karen P. Steel, Ann-Marie Mallon, Steve D. M. Brown

Abstract

The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function.The full extent of the genetic basis for hearing impairment is unknown. Here, as part of the International Mouse Phenotyping Consortium, the authors perform a hearing loss screen in 3006 mouse knockout strains and identify 52 new candidate genes for genetic hearing loss.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 127 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 127 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 36 28%
Student > Ph. D. Student 18 14%
Other 15 12%
Professor 11 9%
Student > Bachelor 9 7%
Other 20 16%
Unknown 18 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 31 24%
Neuroscience 22 17%
Agricultural and Biological Sciences 20 16%
Medicine and Dentistry 9 7%
Computer Science 6 5%
Other 18 14%
Unknown 21 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 127. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2021.
All research outputs
#322,287
of 25,186,033 outputs
Outputs from Nature Communications
#4,913
of 55,661 outputs
Outputs of similar age
#6,723
of 330,814 outputs
Outputs of similar age from Nature Communications
#128
of 1,364 outputs
Altmetric has tracked 25,186,033 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 55,661 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 55.8. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,814 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 1,364 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.