↓ Skip to main content

Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

Overview of attention for article published in International Journal of Biometeorology, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
94 Mendeley
Title
Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis
Published in
International Journal of Biometeorology, October 2017
DOI 10.1007/s00484-017-1454-6
Pubmed ID
Authors

Philip G. Oguntunde, Gunnar Lischeid, Ottfried Dietrich

Abstract

This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease (P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 94 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 17%
Researcher 13 14%
Student > Doctoral Student 8 9%
Unspecified 7 7%
Student > Master 6 6%
Other 12 13%
Unknown 32 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 19%
Environmental Science 9 10%
Earth and Planetary Sciences 7 7%
Unspecified 7 7%
Computer Science 3 3%
Other 10 11%
Unknown 40 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2017.
All research outputs
#2,593,361
of 23,005,189 outputs
Outputs from International Journal of Biometeorology
#259
of 1,299 outputs
Outputs of similar age
#51,802
of 326,301 outputs
Outputs of similar age from International Journal of Biometeorology
#15
of 36 outputs
Altmetric has tracked 23,005,189 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,299 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,301 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.