↓ Skip to main content

VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization

Overview of attention for article published in Cell Reports, October 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

news
2 news outlets
twitter
3 X users
weibo
1 weibo user

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization
Published in
Cell Reports, October 2014
DOI 10.1016/j.celrep.2014.09.003
Pubmed ID
Authors

Sharon Lim, Yin Zhang, Danfang Zhang, Fang Chen, Kayoko Hosaka, Ninghan Feng, Takahiro Seki, Patrik Andersson, Jingrong Li, Jingwu Zang, Baocun Sun, Yihai Cao

Abstract

Molecular mechanisms underlying tumor VEGF-induced host anemia and bone marrow cell (BMC) mobilization remain unknown. Here, we report that tumor VEGF markedly induced sinusoidal vasculature dilation in bone marrow (BM) and BMC mobilization to tumors and peripheral tissues in mouse and human tumor models. Unexpectedly, anti-VEGFR2, but not anti-VEGFR1, treatment completely blocked VEGF-induced anemia and BMC mobilization. Genetic deletion of Vegfr2 in endothelial cells markedly ablated VEGF-stimulated BMC mobilization. Conversely, deletion of the tyrosine kinase domain from Vegfr1 gene (Vegfr1(TK-/-)) did not affect VEGF-induced BMC mobilization. Analysis of VEGFR1(+)/VEGFR2(+) populations in peripheral blood and BM showed no significant ratio difference between VEGF- and control tumor-bearing animals. These findings demonstrate that vascular dilation through the VEGFR2 signaling is the mechanism underlying VEGF-induced BM mobilization and anemia. Thus, our data provide mechanistic insights on VEGF-induced BMC mobilization in tumors and have therapeutic implications by targeting VEGFR2 for cancer therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 30 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 23%
Researcher 6 19%
Student > Master 3 10%
Other 2 6%
Student > Bachelor 2 6%
Other 3 10%
Unknown 8 26%
Readers by discipline Count As %
Medicine and Dentistry 7 23%
Biochemistry, Genetics and Molecular Biology 5 16%
Agricultural and Biological Sciences 3 10%
Engineering 2 6%
Physics and Astronomy 2 6%
Other 5 16%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 October 2014.
All research outputs
#1,937,451
of 25,374,647 outputs
Outputs from Cell Reports
#4,409
of 12,956 outputs
Outputs of similar age
#21,463
of 267,589 outputs
Outputs of similar age from Cell Reports
#61
of 204 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 12,956 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 30.3. This one has gotten more attention than average, scoring higher than 65% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,589 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 204 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.