↓ Skip to main content

A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers

Overview of attention for article published in Environmental Science and Pollution Research, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
16 Mendeley
Title
A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers
Published in
Environmental Science and Pollution Research, October 2014
DOI 10.1007/s11356-014-3671-4
Pubmed ID
Authors

Evelyn Krawczyk-Bärsch, Laura Lütke, Henry Moll, Frank Bok, Robin Steudtner, André Rossberg

Abstract

The interaction between the Pseudomonas fluorescens biofilm and U(VI) were studied using extended X-ray absorption fine structure spectroscopy (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS). In EXAFS studies, the formation of a stable uranyl phosphate mineral, similar to autunite (Ca[UO2]2[PO4]2•2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2•10-12H2O) was observed. This is the first time such a biomineralization process has been observed in P. fluorescens. Biomineralization occurs due to phosphate release from the cellular polyphosphate, likely as a cell's response to the added uranium. It differs significantly from the biosorption process occurring in the planktonic cells of the same strain. TRLFS studies of the uranium-contaminated nutrient medium identified aqueous Ca2UO2(CO3)3 and UO2(CO3)3 (4-) species, which in contrast to the biomineralization in the P. fluorescens biofilm, may contribute to the transport and migration of U(VI). The obtained results reveal that biofilms of P. fluorescens may play an important role in predicting the transport behavior of uranium in the environment. They will also contribute to the improvement of remediation methods in uranium-contaminated sites.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Ph. D. Student 3 19%
Student > Bachelor 2 13%
Student > Postgraduate 2 13%
Student > Doctoral Student 1 6%
Other 1 6%
Unknown 3 19%
Readers by discipline Count As %
Chemistry 3 19%
Agricultural and Biological Sciences 3 19%
Environmental Science 2 13%
Biochemistry, Genetics and Molecular Biology 2 13%
Earth and Planetary Sciences 2 13%
Other 1 6%
Unknown 3 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2014.
All research outputs
#16,223,992
of 23,911,072 outputs
Outputs from Environmental Science and Pollution Research
#3,738
of 9,883 outputs
Outputs of similar age
#152,592
of 259,206 outputs
Outputs of similar age from Environmental Science and Pollution Research
#56
of 127 outputs
Altmetric has tracked 23,911,072 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,883 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 259,206 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 127 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.