↓ Skip to main content

Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids

Overview of attention for article published in Science of the Total Environment, December 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
video
1 YouTube creator

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids
Published in
Science of the Total Environment, December 2016
DOI 10.1016/j.scitotenv.2016.03.033
Pubmed ID
Authors

James L. Gray, Thomas Borch, Edward T. Furlong, Jessica G. Davis, Tracy J. Yager, Yun-Ya Yang, Dana W. Kolpin

Abstract

The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5days prior to and 1, 9, and 35days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the passage of a month.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 23%
Researcher 13 15%
Student > Master 7 8%
Student > Bachelor 7 8%
Student > Doctoral Student 5 6%
Other 16 18%
Unknown 20 23%
Readers by discipline Count As %
Environmental Science 23 26%
Engineering 8 9%
Agricultural and Biological Sciences 8 9%
Earth and Planetary Sciences 4 5%
Chemistry 4 5%
Other 15 17%
Unknown 26 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 February 2021.
All research outputs
#16,720,137
of 25,371,288 outputs
Outputs from Science of the Total Environment
#18,270
of 29,621 outputs
Outputs of similar age
#254,949
of 422,161 outputs
Outputs of similar age from Science of the Total Environment
#197
of 292 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,621 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,161 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 292 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.