↓ Skip to main content

Effects of Aluminium on β-Amyloid (1–42) and Secretases (APP-Cleaving Enzymes) in Rat Brain

Overview of attention for article published in Neurochemical Research, May 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Citations

dimensions_citation
51 Dimensions

Readers on

mendeley
47 Mendeley
Title
Effects of Aluminium on β-Amyloid (1–42) and Secretases (APP-Cleaving Enzymes) in Rat Brain
Published in
Neurochemical Research, May 2014
DOI 10.1007/s11064-014-1317-z
Pubmed ID
Authors

Linping Wang, Jiali Hu, Yue Zhao, Xiaoting Lu, Qinli Zhang, Qiao Niu

Abstract

Chronic administration of aluminium has been proposed as an environmental factor that may affect some pathological changes related to neurotoxicity and Alzheimer's disease (AD). The abnormal generation and deposition of β-amyloid (Aβ) in senile plaques are hallmark features in the brains of AD patients. Furthermore, Aβ is generated by the sequential cleavage of the amyloid precursor protein (APP) via the APP cleaving enzyme (α-secretase, or β-secretase) and γ-secretase. In the present study, we investigated the modulation of Aβ deposition and neurotoxicity in aluminium-maltolate-treated (0, 15, 30, 45 mmol/kg body weight via intraperitoneal injection) in experimental rats. We measured Aβ1-40 and Aβ1-42 in the cortex and hippocampus in rat brains using ELISA. Subtypes of α-secretase, β-secretase, and γ-secretase, including ADAM9, ADAM10, ADAM17 (TACE), BACE1, presenilin 1 (PS1) and nicastrin (NCT), were determined using western blotting analyses. These results indicated that aluminium-maltolate induced an AD-like behavioural deficit in rats at 30 and 45 mmol/kg body weight. Moreover, the Aβ1-42 content increased significantly, both in the cortex and hippocampus, although no changes were observed in Aβ1-40. Furthermore, ADAM9, ADAM10, and ADAM17 decreased significantly; in contrast, BACE1, PS1, and NCT showed significant increase. Taken together, these results suggest that the changes in secretases may correlate to the abnormal deposition of Aβ by aluminium in rat brains.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 17%
Researcher 5 11%
Student > Postgraduate 4 9%
Student > Ph. D. Student 4 9%
Professor 3 6%
Other 7 15%
Unknown 16 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 15%
Neuroscience 4 9%
Biochemistry, Genetics and Molecular Biology 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Materials Science 2 4%
Other 7 15%
Unknown 22 47%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 March 2020.
All research outputs
#14,788,263
of 22,768,097 outputs
Outputs from Neurochemical Research
#1,222
of 2,091 outputs
Outputs of similar age
#128,146
of 227,547 outputs
Outputs of similar age from Neurochemical Research
#8
of 22 outputs
Altmetric has tracked 22,768,097 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,091 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.