↓ Skip to main content

Assessment of the Zn–Co mixtures rhizotoxicity under Ca deficiency: Using two conventional mixture models based on the cell membrane surface potential

Overview of attention for article published in Chemosphere, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessment of the Zn–Co mixtures rhizotoxicity under Ca deficiency: Using two conventional mixture models based on the cell membrane surface potential
Published in
Chemosphere, May 2014
DOI 10.1016/j.chemosphere.2014.04.079
Pubmed ID
Authors

Yi-Min Wang, Peng Wang, Ling-Fei Ni, Xiu-Zhen Hao, Dong-Mei Zhou

Abstract

Toxicity assessment of Zn-Co mixtures involves multiple ions interactions. The negative potential (ψ0) at the cell membrane surface (CMs) concentrated cationic toxicants (denoted {M(2+)}0) and influenced the rhizotoxicity of Co(2+) or Zn(2+). The single and joint rhizotoxicity of Co(2+) and Zn(2+) to wheat (Triticum aestivum L.) were examined, coupled with different Ca(2+) levels. Joint effects of Zn(2+), Co(2+) and Ca(2+) were estimated by the linearly extended concentration addition (CA) and response addition (RA) models. Incorporation of Ca(2+) in single metal toxicity assessment significantly enhanced the prediction accuracy (r(2) increased from 0.948 to 0.550 for Zn(2+) and from 0.903 to 0.611 for Co(2+), respectively). ψ0 affected the multiple metals toxicity in both conventional mixture models (r(2)=0.814 for CA model and 0.820 for RA model). Concretely, {Zn(2+)}0 alleviated the toxicity of {Co(2+)}0, while {Co(2+)}0 had non-significant effect on {Zn(2+)}0 toxicity. Growth responses to {Ca(2+)}0 were substantially affected by {Zn(2+)}0 and {Co(2+)}0. Ca addition in medium decreased the {M(2+)}0 by reducing the ψ0 negativity, moreover this addition alleviated Ca deficiency at CMs induced by Zn(2+) (or Co(2+)). These consistent results from both extended CA and RA models indicated that ψ0 provided a novel sight for understanding the rhizotoxicity of multiple metals.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 33%
Professor 1 8%
Unspecified 1 8%
Student > Postgraduate 1 8%
Student > Doctoral Student 1 8%
Other 0 0%
Unknown 4 33%
Readers by discipline Count As %
Unspecified 1 8%
Environmental Science 1 8%
Agricultural and Biological Sciences 1 8%
Engineering 1 8%
Unknown 8 67%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2014.
All research outputs
#22,759,452
of 25,373,627 outputs
Outputs from Chemosphere
#11,384
of 13,455 outputs
Outputs of similar age
#209,116
of 241,811 outputs
Outputs of similar age from Chemosphere
#94
of 130 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,455 research outputs from this source. They receive a mean Attention Score of 4.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 241,811 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 130 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.