↓ Skip to main content

Molecular interactions with redox sites and salt bridges modulate the anti-aggregatory effect of flavonoid, tannin and cardenolide moieties against amyloid-beta (1–42) in silico

Overview of attention for article published in In Silico Pharmacology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
9 Mendeley
Title
Molecular interactions with redox sites and salt bridges modulate the anti-aggregatory effect of flavonoid, tannin and cardenolide moieties against amyloid-beta (1–42) in silico
Published in
In Silico Pharmacology, October 2017
DOI 10.1007/s40203-017-0033-1
Pubmed ID
Authors

Rafael Vincent M. Manalo

Abstract

In this study, the interactions of flavonoid, tannin and cardenolide moieties as well as their known metabolites were docked against the apolar NMR structure of the aggregatory amyloid-beta fragment (Aβ1-42). Results showed that the catechin moiety favorably bound Aβ1-42 peptide at Asp23, Asn27, Ser26 and Glu22 residues, with chalcone similarly binding the middle region of the peptide. Remarkably, hippuric and ferulic acids exhibited hydrophobic interactions with Aβ1-42 at the latter portion of the peptide, possibly blocking the salt bridges formed by Glu22-Lys28 which stabilizes Phe19-Gly25, as well as the β-sheet Leu34-Gly38 that are known to exist in peptide aggregation. Meanwhile, the metabolites of hydrolyzable tannins, such as urolithin A and gallic acid, exhibited H-bonding interactions with different residues of Aβ1-42, including Asp1, Asp23 and hydrophobic interactions by gallic acid planar ring to the Hsd6 residue. The coverage was lessened in pyrogallol, suggesting that gallic acid loses its efficacy when further metabolized. Lastly, the different binding poses of the cardenolide moiety interacted with Hsp6 (protonated His) and Tyr10 via hydrophobic interactions. Due to these interactions, the large polycyclic moiety of the ligand would also block further interactions with Hsd6 (prototropic tautomer of His), Asp7, Ser8 and Gly9 that are integral to His6-His13-His14, Arg5-Asp7and Leu34-Gly38 β-sheets, salt bridges in Glu22-Lys28 and turn conformation Phe19-Gly25. Together, these data suggest that the known metabolites of anthocyanins and hydrolyzable tannins contribute the most effective anti-aggregatory interactions with Aβ1-42, with an unexpected role for cardiac glycosides such as the cardenolie moiety. These bring to light the important role of metabolism in vivo, and suggests further investigation on the effects of these metabolites when concentrated in vivo.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 44%
Student > Ph. D. Student 1 11%
Unspecified 1 11%
Student > Postgraduate 1 11%
Student > Master 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 33%
Medicine and Dentistry 2 22%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Agricultural and Biological Sciences 1 11%
Unspecified 1 11%
Other 0 0%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 March 2018.
All research outputs
#14,957,976
of 23,007,053 outputs
Outputs from In Silico Pharmacology
#33
of 76 outputs
Outputs of similar age
#192,705
of 325,897 outputs
Outputs of similar age from In Silico Pharmacology
#4
of 5 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 76 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,897 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one.