↓ Skip to main content

Evolution of the Aux/IAA Gene Family in Hexaploid Wheat

Overview of attention for article published in Journal of Molecular Evolution, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
6 Mendeley
Title
Evolution of the Aux/IAA Gene Family in Hexaploid Wheat
Published in
Journal of Molecular Evolution, October 2017
DOI 10.1007/s00239-017-9810-z
Pubmed ID
Authors

Linyi Qiao, Li Zhang, Xiaojun Zhang, Lei Zhang, Xin Li, Jianzhong Chang, Haixian Zhan, Huijuan Guo, Jun Zheng, Zhijian Chang

Abstract

The Aux/IAA (IAA) gene family, involved in the auxin signalling pathway, acts as an important regulator in plant growth and development. In this study, we explored the evolutionary trajectory of the IAA family in common wheat. The results showed ten pairs of paralogs among 34 TaIAA family members. Seven of the pairs might have undergone segmental duplication, and the other three pairs appear to have experienced tandem duplication. Except for TaIAA15-16, these duplication events occurred in the ancestral genomes before the divergence of Triticeae. After that point, two polyploidization events shaped the current TaIAA family consisting of three subgenomic copies. The structure or expression pattern of the TaIAA family begins to differentiate in the hexaploid genome, where TaIAAs in the D genome lost more genes (eight) and protein secondary structures (α1, α3 and β5) than did the other two genomes. Expression analysis showed that six members of the TaIAA family were not expressed, and members such as TaIAA8, 15, 16, 28 and 33 exhibited tissue-specific expression patterns. In addition, three of the ten pairs of paralogs (TaIAA5-12, TaIAA15-16 and TaIAA29-30) showed similar expression patterns, and another five paralog pairs displayed differential expression patterns. Phylogenetic analysis showed that paralog pairs with high rates of evolution (ω > ω 0), particularly TaIAA15-16 and TaIAA29-30, experienced greater motif loss, with only zero to two interacting IAA proteins. In contrast, most paralogous genes with low ω, such as TaIAA5-12, had more complete motifs and higher degrees of interaction with other family members.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 33%
Professor 1 17%
Professor > Associate Professor 1 17%
Student > Ph. D. Student 1 17%
Unknown 1 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 67%
Biochemistry, Genetics and Molecular Biology 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 December 2017.
All research outputs
#14,957,976
of 23,007,053 outputs
Outputs from Journal of Molecular Evolution
#1,132
of 1,450 outputs
Outputs of similar age
#194,430
of 328,606 outputs
Outputs of similar age from Journal of Molecular Evolution
#8
of 11 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,450 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,606 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.