↓ Skip to main content

N-3 polyunsaturated fatty acids inhibit IFN-γ-induced IL-18 binding protein production by prostate cancer cells

Overview of attention for article published in Cancer Immunology, Immunotherapy, October 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
13 Mendeley
Title
N-3 polyunsaturated fatty acids inhibit IFN-γ-induced IL-18 binding protein production by prostate cancer cells
Published in
Cancer Immunology, Immunotherapy, October 2014
DOI 10.1007/s00262-014-1630-z
Pubmed ID
Authors

Xiaofeng Wang, Andrew Breeze, Marianna Kulka

Abstract

Prostate cancer cells can produce IL-18 binding protein (IL-18BP) in response to interferon-γ (IFN-γ), which may function to neutralize IL-18, an anti-tumor factor formerly known as IFN-γ inducing factor. The consumption of n-3 polyunsaturated fatty acids (PUFAs) has been associated with a lower risk of certain types of cancer including prostate cancer, although the precise mechanisms of this effect are poorly understood. We hypothesized that n-3 PUFAs could modify IL-18BP production by prostate cancer cells by altering IFN-γ receptor-mediated signal transduction. Here, we demonstrate that n-3 PUFA treatment significantly reduced IFN-γ-induced IL-18BP production by DU-145 and PC-3 prostate cancer cells by inhibiting IL-18BP mRNA expression and was associated with a reduction in IFN-γ receptor expression. Furthermore, IFN-γ-induced phosphorylation of Janus kinase 1 (JAK1), signal transducers and activators of transcription 1 (STAT1), extracellular signal-regulated kinases 1/2 (ERK1/2), and P38 were suppressed by n-3 PUFA treatment. By contrast, n-6 PUFA had no effect on IFN-γ receptor expression, but decreased IFN-γ-induced IL-18BP production and IFN-γ stimulation of JAK1, STAT1, ERK1/2, and JNK phosphorylation. These data indicate that both n-3 and n-6 PUFAs may be beneficial in prostate cancer by altering IFN-γ signaling, thus inhibiting IL-18BP production and thereby rendering prostate cancer cells more sensitive to IL-18-mediated immune responses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 31%
Student > Master 3 23%
Student > Ph. D. Student 2 15%
Lecturer 1 8%
Researcher 1 8%
Other 0 0%
Unknown 2 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 31%
Agricultural and Biological Sciences 3 23%
Medicine and Dentistry 3 23%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 July 2015.
All research outputs
#14,203,052
of 22,768,097 outputs
Outputs from Cancer Immunology, Immunotherapy
#1,994
of 2,881 outputs
Outputs of similar age
#135,138
of 260,656 outputs
Outputs of similar age from Cancer Immunology, Immunotherapy
#19
of 31 outputs
Altmetric has tracked 22,768,097 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,881 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,656 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.