↓ Skip to main content

Comparative proteomic analysis: SclR is importantly involved in carbohydrate metabolism in Aspergillus oryzae

Overview of attention for article published in Applied Microbiology and Biotechnology, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
16 Mendeley
Title
Comparative proteomic analysis: SclR is importantly involved in carbohydrate metabolism in Aspergillus oryzae
Published in
Applied Microbiology and Biotechnology, November 2017
DOI 10.1007/s00253-017-8588-7
Pubmed ID
Authors

Feng-Jie Jin, Pei Han, Miao Zhuang, Zhi-Min Zhang, Long Jin, Yasuji Koyama

Abstract

The helix-loop-helix (HLH) family of transcriptional factors is a key player in a wide range of developmental processes in organisms from mammals to microbes. We previously identified the bHLH transcription factor SclR in Aspergillus oryzae and found that the loss of SclR function led to significant phenotypic changes, such as rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. The result implied that SclR is potentially important in both traditional fermentative manufacturing and commercial enzyme production in A. oryzae because of its effect on growth. Therefore, this study presents a comparative assessment at the proteome level of the intracellular differences between an sclR-disrupted strain and a control strain using isobaric tandem mass tag (TMT) labeling for quantification. A total of 5447 proteins were identified, and 568 were differentially expressed proteins (DEPs). Of the DEPs, 251 proteins were increased by 1.5-fold, and 317 proteins were decreased by 1.5-fold in an sclR-disrupted strain compared to the control. The comparison of the quantitative TMT results revealed that SclR was mainly involved in carbon metabolism, especially carbohydrate metabolism. In addition, an enzyme profile by a semi-quantitative method (API-ZYM) indicated that three enzymes (β-galactosidase, α-glucosidase, and α-mannosidase) were significantly less active in the ∆sclR strain than in the control. Moreover, quantitative RT-PCR showed that the expression of certain genes was changed similarly to their corresponding proteins. These results suggested that a possible function of SclR during growth of A. oryzae is its important involvement in carbohydrate metabolism.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 25%
Student > Master 3 19%
Lecturer > Senior Lecturer 1 6%
Student > Bachelor 1 6%
Other 1 6%
Other 2 13%
Unknown 4 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Environmental Science 2 13%
Agricultural and Biological Sciences 2 13%
Medicine and Dentistry 2 13%
Business, Management and Accounting 1 6%
Other 1 6%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2017.
All research outputs
#21,608,038
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#6,994
of 8,034 outputs
Outputs of similar age
#291,943
of 333,353 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#101
of 122 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,353 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.