↓ Skip to main content

Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

Overview of attention for article published in Nature Genetics, November 2014
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
12 news outlets
blogs
2 blogs
twitter
29 X users

Citations

dimensions_citation
179 Dimensions

Readers on

mendeley
217 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes
Published in
Nature Genetics, November 2014
DOI 10.1038/ng.3130
Pubmed ID
Authors

Julian Schubert, Aleksandra Siekierska, Mélanie Langlois, Patrick May, Clément Huneau, Felicitas Becker, Hiltrud Muhle, Arvid Suls, Johannes R Lemke, Carolien G F de Kovel, Holger Thiele, Kathryn Konrad, Amit Kawalia, Mohammad R Toliat, Thomas Sander, Franz Rüschendorf, Almuth Caliebe, Inga Nagel, Bernard Kohl, Angela Kecskés, Maxime Jacmin, Katia Hardies, Sarah Weckhuysen, Erik Riesch, Thomas Dorn, Eva H Brilstra, Stephanie Baulac, Rikke S Møller, Helle Hjalgrim, Bobby P C Koeleman, Karin Jurkat-Rott, Frank Lehmann-Horn, Jared C Roach, Gustavo Glusman, Leroy Hood, David J Galas, Benoit Martin, Peter A M de Witte, Saskia Biskup, Peter De Jonghe, Ingo Helbig, Rudi Balling, Peter Nürnberg, Alexander D Crawford, Camila V Esguerra, Yvonne G Weber, Holger Lerche

Abstract

Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 29 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 217 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Luxembourg 3 1%
United States 2 <1%
Germany 1 <1%
Finland 1 <1%
Unknown 210 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 49 23%
Student > Ph. D. Student 40 18%
Student > Master 21 10%
Student > Doctoral Student 17 8%
Student > Bachelor 14 6%
Other 44 20%
Unknown 32 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 47 22%
Biochemistry, Genetics and Molecular Biology 39 18%
Medicine and Dentistry 36 17%
Neuroscience 26 12%
Pharmacology, Toxicology and Pharmaceutical Science 5 2%
Other 17 8%
Unknown 47 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 113. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2015.
All research outputs
#377,920
of 26,017,215 outputs
Outputs from Nature Genetics
#745
of 7,639 outputs
Outputs of similar age
#3,839
of 278,601 outputs
Outputs of similar age from Nature Genetics
#6
of 67 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,639 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 43.7. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,601 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 67 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.