↓ Skip to main content

Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse

Overview of attention for article published in Brain Structure and Function, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
70 Mendeley
Title
Functional comparison of corticostriatal and thalamostriatal postsynaptic responses in striatal neurons of the mouse
Published in
Brain Structure and Function, November 2017
DOI 10.1007/s00429-017-1536-6
Pubmed ID
Authors

M. A. Arias-García, D. Tapia, J. A. Laville, V. M. Calderón, Y. Ramiro-Cortés, J. Bargas, E. Galarraga

Abstract

Synaptic inputs from cortex and thalamus were compared in electrophysiologically defined striatal cell classes: direct and indirect pathways' striatal projection neurons (dSPNs and iSPNs), fast-spiking interneurons (FS), cholinergic interneurons (ChINs), and low-threshold spiking-like (LTS-like) interneurons. Our purpose was to observe whether stimulus from cortex or thalamus had equivalent synaptic strength to evoke prolonged suprathreshold synaptic responses in these neuron classes. Subthreshold responses showed that inputs from either source functionally mix up in their dendrites at similar electrotonic distances from their somata. Passive and active properties of striatal neuron classes were consistent with the previous studies. Cre-dependent adeno-associated viruses containing Td-Tomato or eYFP fluorescent proteins were used to identify target cells. Transfections with ChR2-eYFP driven by the promoters CamKII or EF1.DIO in intralaminar thalamic nuclei using Vglut-2-Cre mice, or CAMKII in the motor cortex were used to stimulate cortical or thalamic afferents optogenetically. Both field stimuli in the cortex or photostimulation of ChR2-YFP cortical fibers evoked similar prolonged suprathreshold responses in SPNs. Photostimulation of ChR2-YFP thalamic afferents also evoked suprathreshold responses. Differences previously described between responses of dSPNs and iSPNs were observed in both cases. Prolonged suprathreshold responses could also be evoked from both sources onto all other neuron classes studied. However, to evoke thalamostriatal suprathreshold responses, afferents from more than one thalamic nucleus had to be stimulated. In conclusion, both thalamus and cortex are capable to generate suprathreshold responses converging on diverse striatal cell classes. Postsynaptic properties appear to shape these responses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 26%
Student > Ph. D. Student 11 16%
Student > Bachelor 8 11%
Student > Master 7 10%
Other 5 7%
Other 12 17%
Unknown 9 13%
Readers by discipline Count As %
Neuroscience 32 46%
Agricultural and Biological Sciences 12 17%
Psychology 3 4%
Medicine and Dentistry 3 4%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 5 7%
Unknown 13 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 November 2017.
All research outputs
#19,702,729
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,236
of 1,725 outputs
Outputs of similar age
#257,578
of 333,148 outputs
Outputs of similar age from Brain Structure and Function
#27
of 51 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,148 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.