↓ Skip to main content

CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior

Overview of attention for article published in Brain Structure and Function, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
38 Mendeley
Title
CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior
Published in
Brain Structure and Function, November 2017
DOI 10.1007/s00429-017-1544-6
Pubmed ID
Authors

Amit G. Choudhary, Amita R. Somalwar, Sneha Sagarkar, Abhishek Rale, Amul Sakharkar, Nishikant K. Subhedar, Dadasaheb M. Kokare

Abstract

Paraventricular thalamic nucleus (PVT) serves as a transit node processing food and drug-associated reward information, but its afferents and efferents have not been fully defined. We test the hypothesis that the CART neurons in the lateral hypothalamus (LH) project to the PVT neurons, which in turn communicate via the glutamatergic fibers with the nucleus accumbens shell (AcbSh), the canonical site for reward. Rats conditioned to self-stimulate via an electrode in the right LH-medial forebrain bundle were used. Intra-PVT administration of CART (55-102) dose-dependently (10-50 ng/rat) lowered intracranial self-stimulation (ICSS) threshold and increased lever press activity, suggesting reward-promoting action of the peptide. However, treatment with CART antibody (intra-PVT) or MK-801 (NMDA antagonist, intra-AcbSh) produced opposite effects. A combination of sub-effective dose of MK-801 (0.01 µg/rat, intra-AcbSh) and effective dose of CART (25 ng/rat, intra-PVT) attenuated CART's rewarding action. Further, we screened the LH-PVT-AcbSh circuit for neuroadaptive changes induced by conditioning experience. A more than twofold increase was noticed in the CART mRNA expression in the LH on the side ipsilateral to the implanted electrode for ICSS. In addition, the PVT of conditioned rats showed a distinct increase in the (a) c-Fos expressing cells and CART fiber terminals, and (b) CART and vesicular glutamate transporter 2 immunostained elements. Concomitantly, the AcbSh showed a striking increase in expression of NMDA receptor subunit NR1. We suggest that CART in LH-PVT and glutamate in PVT-AcbSh circuit might support food-seeking behavior under natural conditions and also store reward memory.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 18%
Student > Bachelor 5 13%
Student > Doctoral Student 4 11%
Student > Master 4 11%
Professor 1 3%
Other 3 8%
Unknown 14 37%
Readers by discipline Count As %
Neuroscience 12 32%
Agricultural and Biological Sciences 5 13%
Biochemistry, Genetics and Molecular Biology 3 8%
Social Sciences 1 3%
Psychology 1 3%
Other 2 5%
Unknown 14 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#21,697,638
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,524
of 1,725 outputs
Outputs of similar age
#293,847
of 335,517 outputs
Outputs of similar age from Brain Structure and Function
#37
of 53 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,517 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.