↓ Skip to main content

Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens

Overview of attention for article published in Microbial Ecology, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

blogs
1 blog
twitter
4 X users

Citations

dimensions_citation
100 Dimensions

Readers on

mendeley
165 Mendeley
Title
Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens
Published in
Microbial Ecology, November 2017
DOI 10.1007/s00248-017-1095-7
Pubmed ID
Authors

Douglas C. Woodhams, Brandon C. LaBumbard, Kelly L. Barnhart, Matthew H. Becker, Molly C. Bletz, Laura A. Escobar, Sandra V. Flechas, Megan E. Forman, Anthony A. Iannetta, Maureen D. Joyce, Falitiana Rabemananjara, Brian Gratwicke, Miguel Vences, Kevin P. C. Minbiole

Abstract

Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 μM, respectively. Violacein showed a MIC of 15 μM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 165 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 165 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 38 23%
Student > Bachelor 29 18%
Researcher 23 14%
Student > Master 17 10%
Student > Doctoral Student 8 5%
Other 12 7%
Unknown 38 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 25%
Biochemistry, Genetics and Molecular Biology 35 21%
Immunology and Microbiology 12 7%
Environmental Science 11 7%
Chemistry 8 5%
Other 15 9%
Unknown 42 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2021.
All research outputs
#3,127,715
of 23,007,887 outputs
Outputs from Microbial Ecology
#259
of 2,065 outputs
Outputs of similar age
#61,574
of 331,173 outputs
Outputs of similar age from Microbial Ecology
#9
of 50 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,065 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,173 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 50 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.