↓ Skip to main content

Peroxisome proliferator-activated receptor γ inhibits pulmonary hypertension targeting store-operated calcium entry

Overview of attention for article published in Journal of Molecular Medicine, November 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
15 Mendeley
Title
Peroxisome proliferator-activated receptor γ inhibits pulmonary hypertension targeting store-operated calcium entry
Published in
Journal of Molecular Medicine, November 2014
DOI 10.1007/s00109-014-1216-4
Pubmed ID
Authors

Yingfeng Wang, Wenju Lu, Kai Yang, Yan Wang, Jie Zhang, Jing Jia, Xin Yun, Lichun Tian, Yuqin Chen, Qian Jiang, Bo Zhang, Xiuqing Chen, Jian Wang

Abstract

In this study, we investigated the role of peroxisome proliferator-activated receptor γ (PPARγ) on store-operated calcium entry (SOCE) and expression of the main store-operated calcium channel (SOCCs) components, canonical transient receptor potential (TRPC) in chronic hypoxia (CH)-induced pulmonary hypertension (CHPH) rat models. Small interfering RNA (siRNA) knockdown and adenoviral overexpression strategies were constructed for loss-of-function and gain-of-function experiments. PPARγ agonist rosiglitazone attenuates the pathogenesis of CHPH and suppresses Hif-1α, TRPC1, TRPC6 expression in the distal pulmonary arteries (PA), and SOCE in freshly isolated rat distal pulmonary arterial smooth muscle cells (PASMCs). By comprehensive use of knockdown and overexpression studies, and bioinformatical analysis of the TRPC gene promoter and luciferase reporter assay, we demonstrated that PPARγ exerts roles of anti-proliferation, anti-migration, and pro-apoptosis in PASMCs, likely by inhibiting the elevated SOCE and TRPC expression. These effects were inhibited under the conditions of hypoxia or Hif-1α accumulation. We also found that under hypoxia, accumulated Hif-1α protein acts as upstream of suppressed PPARγ level; however, targeted PPARγ rescue acts as negative feedback on suppressing Hif-1α level and Hif-1α mediated signaling pathway. PPARγ inhibits CHPH by targeting SOCE and TRPC via inhibiting Hif-1α expression and signaling transduction.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 33%
Professor > Associate Professor 3 20%
Student > Master 2 13%
Professor 1 7%
Unspecified 1 7%
Other 1 7%
Unknown 2 13%
Readers by discipline Count As %
Medicine and Dentistry 4 27%
Agricultural and Biological Sciences 3 20%
Biochemistry, Genetics and Molecular Biology 2 13%
Unspecified 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 1 7%
Unknown 3 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 November 2014.
All research outputs
#20,242,779
of 22,770,070 outputs
Outputs from Journal of Molecular Medicine
#1,340
of 1,550 outputs
Outputs of similar age
#215,365
of 258,049 outputs
Outputs of similar age from Journal of Molecular Medicine
#11
of 22 outputs
Altmetric has tracked 22,770,070 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,550 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 258,049 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.