↓ Skip to main content

Amniotic Membrane Mesenchymal Cells-Derived Factors Skew T Cell Polarization Toward Treg and Downregulate Th1 and Th17 Cells Subsets

Overview of attention for article published in Stem Cell Reviews and Reports, October 2014
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (72nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users
patent
1 patent

Citations

dimensions_citation
116 Dimensions

Readers on

mendeley
88 Mendeley
Title
Amniotic Membrane Mesenchymal Cells-Derived Factors Skew T Cell Polarization Toward Treg and Downregulate Th1 and Th17 Cells Subsets
Published in
Stem Cell Reviews and Reports, October 2014
DOI 10.1007/s12015-014-9558-4
Pubmed ID
Authors

Stefano Pianta, Patrizia Bonassi Signoroni, Ivan Muradore, Melissa Francis Rodrigues, Daniele Rossi, Antonietta Silini, Ornella Parolini

Abstract

We previously demonstrated that cells derived from the mesenchymal layer of the human amniotic membrane (hAMSC) and their conditioned medium (CM-hAMSC) modulate lymphocyte proliferation in a dose-dependent manner. In order to understand the mechanisms involved in immune regulation exerted by hAMSC, we analyzed the effects of CM-hAMSC on T-cell polarization towards Th1, Th2, Th17, and T-regulatory (Treg) subsets. We show that CM-hAMSC equally suppresses the proliferation of both CD4(+) T-helper (Th) and CD8(+) cytotoxic T-lymphocytes. Moreover, we prove that the CM-hAMSC inhibitory ability affects both central (CD45RO(+)CD62L(+)) and effector memory (CD45RO(+)CD62L(-)) subsets. We evaluated the phenotype of CD4(+) cells in the MLR setting and showed that CM-hAMSC significantly reduced the expression of markers associated to the Th1 (T-bet(+)CD119(+)) and Th17 (RORγt(+)CD161(+)) populations, while having no effect on the Th2 population (GATA3(+)CD193(+)/GATA3(+)CD294(+)cells). T-cell subset modulation was substantiated through the analysis of cytokine release for 6 days during co-culture with alloreactive T-cells, whereby we observed a decrease in specific subset-related cytokines, such as a decrease in pro-inflammatory, Th1-related (TNFα, IFNγ, IL-1β), Th2 (IL-5, IL-6), Th9 (IL-9), and Th17 (IL-17A, IL-22). Furthermore, CM-hAMSC significantly induced the Treg compartment, as shown by an induction of proliferating CD4(+)FoxP3(+) cells, and an increase of CD25(+)FoxP3(+) and CD39(+)FoxP3(+) Treg in the CD4(+) population. Induction of Treg cells was corroborated by the increased secretion of TGF-β. Taken together, these data strengthen the findings regarding the immunomodulatory properties of CM-hAMSC derived from human amniotic membrane MSC, and in particular provide insights into their effect on regulation of T cell polarization.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Turkey 1 1%
Portugal 1 1%
Unknown 86 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 27%
Researcher 14 16%
Student > Master 9 10%
Student > Bachelor 7 8%
Student > Doctoral Student 6 7%
Other 17 19%
Unknown 11 13%
Readers by discipline Count As %
Medicine and Dentistry 24 27%
Biochemistry, Genetics and Molecular Biology 15 17%
Agricultural and Biological Sciences 13 15%
Immunology and Microbiology 7 8%
Neuroscience 5 6%
Other 8 9%
Unknown 16 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2022.
All research outputs
#7,205,554
of 25,374,917 outputs
Outputs from Stem Cell Reviews and Reports
#310
of 1,036 outputs
Outputs of similar age
#74,687
of 274,082 outputs
Outputs of similar age from Stem Cell Reviews and Reports
#9
of 17 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 1,036 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,082 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.