↓ Skip to main content

Whole community transcriptome of a sequencing batch reactor transforming 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO)

Overview of attention for article published in Biodegradation, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
29 Mendeley
Title
Whole community transcriptome of a sequencing batch reactor transforming 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO)
Published in
Biodegradation, November 2017
DOI 10.1007/s10532-017-9814-9
Pubmed ID
Authors

Jennifer Weidhaas, Alexander Panaccione, Ananda Shankar Bhattacharjee, Ramesh Goel, Angela Anderson, Saraswati Poudel Acharya

Abstract

Two sequencing batch reactors (SBRs) were run to bio-mineralize 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) in lab scale settings. The reactors were shown to reproducibly biotransform these munitions under aerobic and anaerobic conditions during the operations of these SBRs. Complete removal (100% biotransformation) of DNAN (initially 17.7 ± 5.4 mg L(-1)) and NTO (initially 15.0 ± 7.1 mg L(-1)) was observed in an anaerobic SBR when Luria-Bertani (LB) broth was present. In contrast, an aerobic SBR degraded only 58 ± 22% of DNAN (initially 19.7 ± 6.2 mg L(-1)) and 45 ± 24% of NTO (initially 9.7 ± 6.3 mg L(-1)) when either LB or glucose was also added indicating that anaerobic conditions are more favorable for biotransformation of these munitions. Transcriptomic analysis of the DNAN and NTO degrading anaerobic SBR revealed upregulation of a putative nitroreductase, hydroxylaminophenol mutases, 4-hydroxylphenyl acetate associated genes, and quinone oxioreductases. Major Bacterial populations included Bacteroidales, Campylobacterales, Enterobacteriales, Pseudomonadales, Burkholderiales and Clostridiales. Results from this study can be used to inform investigation of munition degrading organisms and the functional genes responsible.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Other 3 10%
Student > Doctoral Student 3 10%
Professor > Associate Professor 3 10%
Researcher 3 10%
Other 4 14%
Unknown 6 21%
Readers by discipline Count As %
Environmental Science 10 34%
Engineering 4 14%
Agricultural and Biological Sciences 2 7%
Chemistry 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 1 3%
Unknown 9 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2017.
All research outputs
#18,576,855
of 23,008,860 outputs
Outputs from Biodegradation
#291
of 372 outputs
Outputs of similar age
#226,283
of 294,546 outputs
Outputs of similar age from Biodegradation
#3
of 6 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 372 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,546 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.