↓ Skip to main content

Serum profiling by mass spectrometry combined with bioinformatics for the biomarkers discovery in diffuse large B-cell lymphoma

Overview of attention for article published in Tumor Biology, November 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
11 Mendeley
Title
Serum profiling by mass spectrometry combined with bioinformatics for the biomarkers discovery in diffuse large B-cell lymphoma
Published in
Tumor Biology, November 2014
DOI 10.1007/s13277-014-2830-z
Pubmed ID
Authors

Wenhong Xu, Yue Hu, Xuexin He, Jun Li, Tao Pan, Hai Liu, Xianguo Wu, Hong He, Weiting Ge, Jiekai Yu, Qichun Wei, Shu Zheng, Suzhan Zhang, Yiding Chen

Abstract

The aim of this study was to identify potential serum biomarkers of diffuse large B-cell lymphoma (DLBCL) and to detect DLBCL therapy response biomarkers. DLBCL serum proteomic analysis was performed using the CM10 ProteinChip mass spectrometry (SELDI-TOF-MS) approach combined with bioinformatics. A total of 178 samples were analyzed in this study from untreated early stage DLBCL patients (38), patients with inflammatory lymphadenopathy (13), healthy donors (35), post-treatment non-relapsed DLBCL patients (53), and relapsed DLBCL patients (39). Model 1 formed by nine protein peaks (m/z: 6443, 5913, 6198, 4098, 7775, 9293, 5946, 5977, and 4628) could be used to distinguish DLBCL patients from healthy individuals with an accuracy of 95.89 % (70/73). The diagnostic pattern constructed using the support vector machine including the nine proteins of model 1, showed a maximum Youden's Index. Model 2 formed by three protein peaks (m/z: 3942, 6639, and 4121) could be used to distinguish DLBCL patients from those with inflammatory lymphadenopathy with an accuracy of 94.12 % (48/51). Model 3 formed by six protein peaks could distinguish patients with inflammatory lymphadenopathy from healthy individuals with an accuracy of 97.92 % (47/48). Model 4 could be used to distinguish non-relapsed DLBCL patients from relapsed DLBCL patients with an accuracy of 84.78 % (78/92). The four patterns were validated by leave-one-out cross-validation. These data demonstrate that the CM10 ProteinChip and SELDI-TOF-MS approach combined with bioinformatics can be used effectively to screen for the differential protein expression profiles of DLBCL patients and to predict the response to therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 9%
Unknown 10 91%

Demographic breakdown

Readers by professional status Count As %
Other 2 18%
Professor > Associate Professor 2 18%
Student > Ph. D. Student 2 18%
Student > Bachelor 1 9%
Researcher 1 9%
Other 1 9%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 27%
Medicine and Dentistry 3 27%
Agricultural and Biological Sciences 2 18%
Unknown 3 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2015.
All research outputs
#15,310,749
of 22,771,140 outputs
Outputs from Tumor Biology
#1,050
of 2,622 outputs
Outputs of similar age
#213,902
of 362,064 outputs
Outputs of similar age from Tumor Biology
#53
of 138 outputs
Altmetric has tracked 22,771,140 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They receive a mean Attention Score of 2.2. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 362,064 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.