↓ Skip to main content

T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity

Overview of attention for article published in Child's Nervous System, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
27 Mendeley
Title
T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity
Published in
Child's Nervous System, November 2017
DOI 10.1007/s00381-017-3659-8
Pubmed ID
Authors

Stephen Harward, S. Harrison Farber, Michael Malinzak, Oren Becher, Eric M. Thompson

Abstract

Diffuse intrinsic pontine glioma (DIPG) remains the main cause of death in children with brain tumors. Given the inefficacy of numerous peripherally delivered agents to treat DIPG, convection enhanced delivery (CED) of therapeutic agents is a promising treatment modality. The purpose of this study was to determine which MR imaging type provides the best discrimination of intratumoral heterogeneity to guide future stereotactic implantation of CED catheters into the most cellular tumor regions. Patients ages 18 years or younger with a diagnosis of DIPG from 2000 to 2015 were included. Radiographic heterogeneity index (HI) of the tumor was calculated by measuring the standard deviation of signal intensity of the tumor (SDTumor) normalized to the genu of the corpus callosum (SDCorpus Callosum). Four MR image types (T2-weighted, contrast-enhanced T1-weighted, FLAIR, and ADC) were analyzed at several time points both before and after radiotherapy and chemotherapy. HI values across these MR image types were compared and correlated with patient survival. MR images from 18 patients with DIPG were evaluated. The mean survival ± standard deviation was 13.8 ± 13.7 months. T2-weighted images had the highest HI (mean ± SD, 5.1 ± 2.5) followed by contrast-enhanced T1-weighted images (3.7 ± 1.5), FLAIR images (3.0 ± 1.1), and ADC maps (1.6 ± 0.4). ANOVA demonstrated that HI values were significantly higher for T2-weighted images than FLAIR (p < 0.01) and ADC (p < 0.0001). Following radiotherapy, T2-weighted and contrast-enhanced T1-weighted image HI values increased, while FLAIR and ADC HI values decreased. Univariate and multivariate analyses did not reveal a relationship between HI values and patient survival (p > 0.05). For children with DIPG, T2-weighted MRI demonstrates the greatest signal intensity variance suggesting tumor heterogeneity. Within this heterogeneity, T2-weighted signal hypointensity is known to correlate with increased cellularity and thus may represent a putative target for CED catheter placement in future clinical trials.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 11%
Researcher 3 11%
Student > Doctoral Student 2 7%
Student > Ph. D. Student 2 7%
Student > Bachelor 2 7%
Other 2 7%
Unknown 13 48%
Readers by discipline Count As %
Medicine and Dentistry 5 19%
Agricultural and Biological Sciences 3 11%
Neuroscience 2 7%
Physics and Astronomy 1 4%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 2 7%
Unknown 13 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2017.
All research outputs
#15,483,707
of 23,008,860 outputs
Outputs from Child's Nervous System
#1,046
of 2,800 outputs
Outputs of similar age
#265,149
of 437,882 outputs
Outputs of similar age from Child's Nervous System
#32
of 86 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,800 research outputs from this source. They receive a mean Attention Score of 1.9. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,882 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 86 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.