↓ Skip to main content

Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition

Overview of attention for article published in Brain Structure and Function, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
21 Mendeley
Title
Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition
Published in
Brain Structure and Function, November 2017
DOI 10.1007/s00429-017-1564-2
Pubmed ID
Authors

Xin Hao, Xu Wang, Yiying Song, Xiangzhen Kong, Jia Liu

Abstract

Effectively recognizing surroundings is a critical ability in human navigation. Previous neuroimaging studies have depicted distributed brain regions underpinning spatial navigation, but little is known about how these regions are formed into the navigation network (NN) supporting scene recognition. In this study, we addressed this issue by using a voxel-based global functional connectivity method to characterize the integration (i.e., within-network connectivity, WNC) of the NN and its segregation (i.e., between-network connectivity, BNC) from non-NN networks. We found that the majority of the voxels in the NN showed a stronger WNC than BNC, indicating the encapsulation of the NN. Importantly, individuals with stronger WNC and weaker BNC in the left hippocampus (Hipp) and intraparietal sulcus (IPS) performed better in scene recognition, suggesting that the left Hipp and IPS were involved in scene recognition by both integrating regions in the NN and separating the NN from non-NN networks. Further analyses showed that the integration of these two regions in the NN serves different functions, that is, while the WNC of the left Hipp was only related to scene recognition, the WNC of the left IPS was also related to the general executive control function of attention. In short, our study demonstrated the dual roles of the Hipp and IPS in integration and segregation of the NN to support scene recognition, suggesting that scene recognition involves not only regions specialized in spatial navigation, but also those with general functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 24%
Student > Bachelor 4 19%
Student > Doctoral Student 2 10%
Student > Master 2 10%
Other 1 5%
Other 1 5%
Unknown 6 29%
Readers by discipline Count As %
Psychology 8 38%
Medicine and Dentistry 2 10%
Neuroscience 2 10%
Nursing and Health Professions 1 5%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2017.
All research outputs
#19,015,393
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,150
of 1,725 outputs
Outputs of similar age
#315,942
of 445,254 outputs
Outputs of similar age from Brain Structure and Function
#28
of 55 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,254 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.