↓ Skip to main content

JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells

Overview of attention for article published in Molecular and Cellular Biochemistry, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
17 Mendeley
Title
JIP3 localises to exocytic vesicles and focal adhesions in the growth cones of differentiated PC12 cells
Published in
Molecular and Cellular Biochemistry, November 2017
DOI 10.1007/s11010-017-3222-7
Pubmed ID
Authors

Patrick T. Caswell, Martin Dickens

Abstract

The JNK-interacting protein 3 (JIP3) is a molecular scaffold, expressed predominantly in neurons, that serves to coordinate the activation of the c-Jun N-terminal kinase (JNK) by binding to JNK and the upstream kinases involved in its activation. The JNK pathway is involved in the regulation of many cellular processes including the control of cell survival, cell death and differentiation. JIP3 also associates with microtubule motor proteins such as kinesin and dynein and is likely an adapter protein involved in the tethering of vesicular cargoes to the motors involved in axonal transport in neurons. We have used immunofluorescence microscopy and biochemical fractionation to investigate the subcellular distribution of JIP3 in relation to JNK and to vesicular and organelle markers in rat pheochromocytoma cells (PC12) differentiating in response to nerve growth factor. In differentiated PC12 cells, JIP3 was seen to accumulate in growth cones at the tips of developing neurites where it co-localised with both JNK and the JNK substrate paxillin. Cellular fractionation of PC12 cells showed that JIP3 was associated with a subpopulation of vesicles in the microsomal fraction, distinct from synaptic vesicles, likely to be an anterograde-directed exocytic vesicle pool. In differentiated PC12 cells, JIP3 did not appear to associate with retrograde endosomal vesicles thought to be involved in signalling axonal injury. Together, these observations indicate that JIP3 may be involved in transporting vesicular cargoes to the growth cones of PC12 cells, possibly targeting JNK to its substrate paxillin, and thus facilitating neurite outgrowth.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 35%
Student > Bachelor 3 18%
Student > Ph. D. Student 2 12%
Student > Postgraduate 1 6%
Unknown 5 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 24%
Biochemistry, Genetics and Molecular Biology 3 18%
Neuroscience 2 12%
Medicine and Dentistry 2 12%
Social Sciences 1 6%
Other 0 0%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2017.
All research outputs
#14,085,315
of 23,008,860 outputs
Outputs from Molecular and Cellular Biochemistry
#1,218
of 2,321 outputs
Outputs of similar age
#228,060
of 437,492 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#9
of 30 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,321 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,492 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.