↓ Skip to main content

miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes

Overview of attention for article published in Molecular and Cellular Biochemistry, November 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
33 Mendeley
Title
miR-133a mediates the hypoxia-induced apoptosis by inhibiting TAGLN2 expression in cardiac myocytes
Published in
Molecular and Cellular Biochemistry, November 2014
DOI 10.1007/s11010-014-2273-2
Pubmed ID
Authors

An-ying Li, Qiong Yang, Kan Yang

Abstract

Myocardial hypoxia is a major cause of cardiac dysfunction due to its triggering cell injury and apoptosis. Deregulated microRNAs and their roles in cardiomyocyte apoptosis have attracted much attention. miR-133a is among the most abundant of the miRNAs present in the normal heart, and significant changes in expression of miR-133a were observed in response to anoxia stress. However, the role of this microRNA in myocardial hypoxia-induced apoptosis is presently unclear. In this study, we identified that miR-133a expression was down-regulated in hypoxic H9c2 cells, and its expression gradually decreased with hypoxia time. Functional analysis revealed that miR-133a attenuated hypoxia-induced apoptosis. We further detected expression of apoptosis-related proteins. The results showed that miR-133a suppressed the expression of apoptotic proteins caspase-8, caspase-9, and caspase-3 significantly, while improved the expression of Bcl-2. Bioinformatics analysis, combined with dual-luciferase reporter analysis, was applied to determine that miR-133a directly was binded to the 3'-untranslated region (3'-UTR) of TAGLN2 mRNA and suppressed expression at both transcriptional and translational levels. Next, TAGLN2 knockout was used to reveal that TAGLN2 modulated hypoxia-induced apoptosis via caspase-8 apoptotic pathway. Taken together, our data demonstrated the roles of miR-133a in hypoxia-induced apoptotic and implicate its potential in cardiac dysfunctions therapy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 18%
Student > Master 6 18%
Student > Ph. D. Student 5 15%
Researcher 4 12%
Student > Doctoral Student 3 9%
Other 3 9%
Unknown 6 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 27%
Biochemistry, Genetics and Molecular Biology 5 15%
Medicine and Dentistry 4 12%
Engineering 2 6%
Nursing and Health Professions 1 3%
Other 5 15%
Unknown 7 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2014.
All research outputs
#18,384,336
of 22,771,140 outputs
Outputs from Molecular and Cellular Biochemistry
#1,559
of 2,300 outputs
Outputs of similar age
#261,926
of 361,642 outputs
Outputs of similar age from Molecular and Cellular Biochemistry
#14
of 37 outputs
Altmetric has tracked 22,771,140 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,300 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 361,642 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.