↓ Skip to main content

Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice

Overview of attention for article published in Brain Structure and Function, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
20 Mendeley
Title
Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice
Published in
Brain Structure and Function, November 2017
DOI 10.1007/s00429-017-1565-1
Pubmed ID
Authors

Douglas G. Peters, Carson J. Purnell, Michael P. Haaf, Qing X. Yang, James R. Connor, Mark D. Meadowcroft

Abstract

Impaired brain iron homeostatic mechanisms, independent of pathological hallmarks, are harmful to the brain because excess free iron can cause DNA, protein, and lipid damage via oxidative stress. The goal of this study was to evaluate the longitudinal effect of chronic iron overload and deficiency in the vertebrate brain. Ten-week-old C57BL6 male mice were randomly assigned to one of four unique dietary regiments for 1 year: iron-deficient, normal iron, and two different concentrations of lipophilic iron diet containing 3,5,5-trimethylhexanoyl ferrocene (TMHF). Longitudinal MRI parametrics were used to assess the location and extent of ferric iron distribution. Tissue collected at 12 months was used to directly measure iron-load, protein alterations, and histological metrics. While the iron-deficient diet did not alter brain iron stores, 0.11% TMHF and early exposure with 0.5% TMHF elevated brain iron by roughly 40 and 100%, respectively. R 2 rate increased more in the TMHF groups within iron rich brain regions. Increased brain iron concentration was linearly correlated with an increase in L-ferritin expression, and TMHF diet was found to increase L-ferritin within the olfactory bulb, neocortex, pallidum, thalamus, corpus callosum, CA3 regions of the hippocampus, and substantia nigra. Moreover, gliosis and oxidative stress were detected in the TMHF groups in the regions associated with iron-load. Spatial memory impairment was evident in the iron-loaded mice. This work illustrates that lipophilic iron elevates brain iron in a regionally specific fashion and positions dietary TMHF administration as a model for brain iron overloading.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 20%
Student > Master 3 15%
Student > Bachelor 2 10%
Student > Ph. D. Student 2 10%
Student > Postgraduate 2 10%
Other 2 10%
Unknown 5 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 15%
Medicine and Dentistry 3 15%
Neuroscience 3 15%
Nursing and Health Professions 2 10%
Psychology 1 5%
Other 3 15%
Unknown 5 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2017.
All research outputs
#21,697,638
of 24,217,893 outputs
Outputs from Brain Structure and Function
#1,524
of 1,725 outputs
Outputs of similar age
#381,042
of 445,678 outputs
Outputs of similar age from Brain Structure and Function
#41
of 57 outputs
Altmetric has tracked 24,217,893 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,725 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,678 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.