↓ Skip to main content

The inhibition of polyamine biosynthesis weakens the drought tolerance in white clover (Trifolium repens) associated with the alteration of extensive proteins

Overview of attention for article published in Protoplasma, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
12 Mendeley
Title
The inhibition of polyamine biosynthesis weakens the drought tolerance in white clover (Trifolium repens) associated with the alteration of extensive proteins
Published in
Protoplasma, November 2017
DOI 10.1007/s00709-017-1186-9
Pubmed ID
Authors

Zhou Li, Yan Zhang, Dandan Peng, Yan Peng, Xinquan Zhang, Xiao Ma, Linkai Huang, Yanhong Yan

Abstract

Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 25%
Student > Bachelor 2 17%
Professor 1 8%
Student > Ph. D. Student 1 8%
Unknown 5 42%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 58%
Biochemistry, Genetics and Molecular Biology 1 8%
Unknown 4 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2017.
All research outputs
#20,453,782
of 23,009,818 outputs
Outputs from Protoplasma
#747
of 980 outputs
Outputs of similar age
#373,461
of 438,547 outputs
Outputs of similar age from Protoplasma
#13
of 17 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 980 research outputs from this source. They receive a mean Attention Score of 2.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.