↓ Skip to main content

How MAP kinase modules function as robust, yet adaptable, circuits

Overview of attention for article published in Cell Cycle, June 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How MAP kinase modules function as robust, yet adaptable, circuits
Published in
Cell Cycle, June 2014
DOI 10.4161/cc.29349
Pubmed ID
Authors

Tianhai Tian, Angus Harding

Abstract

Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Master 3 13%
Professor > Associate Professor 2 9%
Researcher 2 9%
Student > Bachelor 2 9%
Other 3 13%
Unknown 6 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 35%
Medicine and Dentistry 4 17%
Biochemistry, Genetics and Molecular Biology 4 17%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2014.
All research outputs
#20,246,428
of 22,774,233 outputs
Outputs from Cell Cycle
#2,989
of 3,682 outputs
Outputs of similar age
#192,689
of 228,262 outputs
Outputs of similar age from Cell Cycle
#37
of 53 outputs
Altmetric has tracked 22,774,233 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,682 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 228,262 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.