↓ Skip to main content

Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis

Overview of attention for article published in Planta, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
16 Mendeley
Title
Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis
Published in
Planta, November 2017
DOI 10.1007/s00425-017-2818-1
Pubmed ID
Authors

Aiqin Zhang, Dongming Han, Yu Wang, Huifang Mu, Tong Zhang, Xiufeng Yan, Qiuying Pang

Abstract

Ribosome activation and sugar metabolic process mainly act on the regulation of salt tolerance in the bioenergy crop Helianthus tuberosus L. as dissected by integrated transcriptomic and proteomic analyses. Helianthus tuberosus L. is an important halophyte plant that can survive in saline-alkali soil. It is vitally necessary to build an available genomic resource to investigate the molecular mechanisms underlying salt tolerance in H. tuberosus. De novo assembly and annotation of transcriptomes were built for H. tuberosus using a HiSeq 4000 platform. 293,823 transcripts were identified and annotated into 190,567 unigenes. In addition, iTRAQ-labeled quantitative proteomics was carried out to detect global protein profiling as a response to salt stress. Comparative omics analysis showed that 5432 genes and 43 proteins were differentially expressed in H. tuberosus under salt stress, which were enriched in the following processes: carbohydrate metabolism, ribosome activation and translation, oxidation-reduction and ion binding. The reprogramming of transcript and protein works suggested that the induced activity of ribosome and sugar signaling may endue H. tuberosus with salt tolerance. With high-quality sequencing and annotation, the obtained transcriptomics and proteomics provide a robust genomic resource for dissecting the regulatory molecular mechanism of H. tuberosus in response to salt stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 31%
Student > Master 2 13%
Student > Doctoral Student 1 6%
Other 1 6%
Researcher 1 6%
Other 0 0%
Unknown 6 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 44%
Biochemistry, Genetics and Molecular Biology 2 13%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Nursing and Health Professions 1 6%
Engineering 1 6%
Other 0 0%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2017.
All research outputs
#15,484,498
of 23,009,818 outputs
Outputs from Planta
#1,880
of 2,738 outputs
Outputs of similar age
#265,700
of 438,547 outputs
Outputs of similar age from Planta
#15
of 28 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,738 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,547 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.