↓ Skip to main content

Characterization of a gene regulatory network underlying astringency loss in persimmon fruit

Overview of attention for article published in Planta, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
20 Mendeley
Title
Characterization of a gene regulatory network underlying astringency loss in persimmon fruit
Published in
Planta, November 2017
DOI 10.1007/s00425-017-2819-0
Pubmed ID
Authors

Soichiro Nishiyama, Noriyuki Onoue, Atsushi Kono, Akihiko Sato, Keizo Yonemori, Ryutaro Tao

Abstract

Transcriptome analysis of a persimmon population segregating for an astringency trait in fruit suggested central roles for a limited number of transcriptional regulators in the loss of proanthocyanidin accumulation. Persimmon (Diospyros kaki; 2n = 6x = 90) accumulates a large amount of proanthocyanidins (PAs) in its fruit, resulting in an astringent taste. Persimmon cultivars are classified into four types based on the nature of astringency loss and the amount of PAs at maturity. Pollination constant and non-astringent (PCNA)-type cultivars stop accumulating PAs in the early stages of fruit development and their fruit can be consumed when still firm without the need for artificial deastringency treatments. While the PCNA trait has been shown to be conferred by a recessive allele at a single locus (ASTRINGENCY; AST), the exact genetic determinant remains unidentified. Here, we conducted transcriptome analyses to elucidate the regulatory mechanism underlying this trait using developing fruits of an F1 population segregating for the PCNA trait. Comparisons of the transcriptomes of PCNA and non-PCNA individuals and hierarchical clustering revealed that genes related to the flavonoid pathway and to abiotic stress responses involving light stimulation were expressed coordinately with PA accumulation. Furthermore, coexpression network analyses suggested that three putative transcription factors were central to the PA regulatory network and that at least DkMYB4 and/or DkMYC1, which have been reported to form a protein complex with each other for PA regulation, may have a central role in the differential expression of PA biosynthetic pathway genes between PCNA and non-PCNA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 20%
Student > Doctoral Student 3 15%
Student > Ph. D. Student 2 10%
Other 1 5%
Student > Master 1 5%
Other 2 10%
Unknown 7 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 30%
Biochemistry, Genetics and Molecular Biology 3 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Psychology 1 5%
Sports and Recreations 1 5%
Other 1 5%
Unknown 7 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 December 2017.
All research outputs
#15,484,498
of 23,009,818 outputs
Outputs from Planta
#1,880
of 2,738 outputs
Outputs of similar age
#265,738
of 438,545 outputs
Outputs of similar age from Planta
#15
of 28 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,738 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,545 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.