↓ Skip to main content

Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy

Overview of attention for article published in Journal of Applied Clinical Medical Physics, November 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy
Published in
Journal of Applied Clinical Medical Physics, November 2014
DOI 10.1120/jacmp.v15i6.5055
Pubmed ID
Authors

Vanessa Panettieri, Ryan L. Smith, Natasha J. Mason, Jeremy L. Millar

Abstract

Publications have reported the benefits of using high-dose-rate brachytherapy (HDRB) for the treatment of prostate cancer, since it provides similar biochemical control as other treatments while showing lowest long-term complications to the organs at risk (OAR). With the inclusion of anatomy-based inverse planning opti- mizers, HDRB has the advantage of potentially allowing dose escalation. Among the algorithms used, the Inverse Planning Simulated Annealing (IPSA) optimizer is widely employed since it provides adequate dose coverage, minimizing dose to the OAR, but it is known to generate large dwell times in particular positions of the catheter. As an alternative, the Hybrid Inverse treatment Planning Optimization (HIPO) algorithm was recently implemented in Oncentra Brachytherapy V. 4.3. The aim of this work was to compare, with the aid of radiobiological models, plans obtained with IPSA and HIPO to assess their use in our clinical practice. Thirty patients were calculated with IPSA and HIPO to achieve our department's clinical constraints. To evaluate their performance, dosimetric data were collected: Prostate PTV D90(%), V100(%), V150(%), and V200(%), Urethra D10(%), Rectum D2cc(%), and conformity indices. Additionally tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with the BioSuite software. The HIPO optimization was performed firstly with Prostate PTV (HIPOPTV) and then with Urethra as priority 1 (HIPOurethra). Initial optimization constraints were then modified to see the effects on dosimetric parameters, TCPs, and NTCPs. HIPO optimizations could reduce TCPs up to 10%-20% for all PTVs lower than 74 cm3. For the urethra, IPSA and HIPOurethra provided similar NTCPs for the majority of volume sizes, whereas HIPOPTV resulted in large NTCP values. These findings were in agreement with dosimetric values. By increasing the PTV maximum dose constraints for HIPOurethra plans, TCPs were found to be in agreement with IPSA without affecting the urethral NTCPs. 

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 28%
Student > Ph. D. Student 6 17%
Student > Postgraduate 3 8%
Professor > Associate Professor 3 8%
Researcher 2 6%
Other 5 14%
Unknown 7 19%
Readers by discipline Count As %
Physics and Astronomy 9 25%
Medicine and Dentistry 8 22%
Engineering 3 8%
Nursing and Health Professions 1 3%
Computer Science 1 3%
Other 4 11%
Unknown 10 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2014.
All research outputs
#22,759,452
of 25,374,647 outputs
Outputs from Journal of Applied Clinical Medical Physics
#1,667
of 2,033 outputs
Outputs of similar age
#235,736
of 276,414 outputs
Outputs of similar age from Journal of Applied Clinical Medical Physics
#4
of 4 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,033 research outputs from this source. They receive a mean Attention Score of 2.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,414 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one.