↓ Skip to main content

Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation

Overview of attention for article published in Applied Microbiology and Biotechnology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
62 Dimensions

Readers on

mendeley
101 Mendeley
Title
Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation
Published in
Applied Microbiology and Biotechnology, December 2017
DOI 10.1007/s00253-017-8680-z
Pubmed ID
Authors

Miao Liu, Siqi Li, Yongzhen Xie, Shiru Jia, Ying Hou, Yang Zou, Cheng Zhong

Abstract

Oxygen plays a key role during bacterial cellulose (BC) biosynthesis by Gluconacetobacter xylinus. In this study, the Vitreoscilla hemoglobin (VHb)-encoding gene vgb, which has been widely applied to improve cell survival during hypoxia, was heterologously expressed in G. xylinus via the pBla-VHb-122 plasmid. G. xylinus and G. xylinus-vgb + were statically cultured under hypoxic (10 and 15% oxygen tension in the gaseous phase), atmospheric (21%), and oxygen-enriched conditions (40 and 80%) to investigate the effect of oxygen on cell growth and BC production. Irrespective of vgb expression, we found that cell density increased with oxygen tension (10-80%) during the exponential growth phase but plateaued to the same value in the stationary phase. In contrast, BC production was found to significantly increase at lower oxygen tensions. In addition, we found that BC production at oxygen tensions of 10 and 15% was 26.5 and 58.6% higher, respectively, in G. xylinus-vgb + than that in G. xylinus. The maximum BC yield and glucose conversion rate, of 4.3 g/L and 184.7 mg/g, respectively, were observed in G. xylinus-vgb + at an oxygen tension of 15%. Finally, BC characterization suggested that hypoxic conditions enhance BC's mass density, Young's modulus, and thermostability, with G. xylinus-vgb + synthesizing softer BC than G. xylinus under hypoxia as a result of a decreased Young's modulus. These results will facilitate the use of static culture for the production of BC.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 101 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 101 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 12%
Student > Ph. D. Student 11 11%
Student > Bachelor 10 10%
Other 9 9%
Student > Master 9 9%
Other 16 16%
Unknown 34 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 17%
Agricultural and Biological Sciences 17 17%
Chemical Engineering 6 6%
Immunology and Microbiology 5 5%
Materials Science 5 5%
Other 8 8%
Unknown 43 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2017.
All research outputs
#21,608,038
of 24,119,703 outputs
Outputs from Applied Microbiology and Biotechnology
#6,994
of 8,034 outputs
Outputs of similar age
#382,532
of 446,959 outputs
Outputs of similar age from Applied Microbiology and Biotechnology
#92
of 110 outputs
Altmetric has tracked 24,119,703 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,034 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,959 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 110 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.