↓ Skip to main content

Insight into the reaction mechanism of lipoyl synthase: a QM/MM study

Overview of attention for article published in JBIC Journal of Biological Inorganic Chemistry, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
22 Mendeley
Title
Insight into the reaction mechanism of lipoyl synthase: a QM/MM study
Published in
JBIC Journal of Biological Inorganic Chemistry, December 2017
DOI 10.1007/s00775-017-1522-8
Pubmed ID
Authors

Geng Dong, Lili Cao, Ulf Ryde

Abstract

Lipoyl synthase (LipA) catalyses the final step of the biosynthesis of the lipoyl cofactor by insertion of two sulfur atoms at the C6 and C8 atoms of the protein-bound octanoyl substrate. In this reaction, two [4Fe4S] clusters and two molecules of S-adenosyl-L-methionine are used. One of the two FeS clusters is responsible for the generation of a powerful oxidant, the 5'-deoxyadenosyl radical (5'-dA•). The other (the auxiliary cluster) is the source of both sulfur atoms that are inserted into the substrate. In this paper, the spin state of the FeS clusters and the reaction mechanism is investigated by the combined quantum mechanical and molecular mechanics approach. The calculations show that the ground state of the two FeS clusters, both in the [4Fe4S]2+ oxidation state, is a singlet state with antiferromagnetically coupled high-spin Fe ions and that there is quite a large variation of the energies of the various broken-symmetry states, up to 40 kJ/mol. For the two S-insertion reactions, the highest energy barrier is found for the hydrogen-atom abstraction from the octanoyl substrate by 5'-dA•. The formation of 5'-dA• is very facile for LipA, with an energy barrier of 6 kJ/mol for the first S-insertion reaction and without any barrier for the second S-insertion reaction. In addition, the first S ion attack on the C6 radical of octanoyl was found to take place directly by the transfer of the H6 from the substrate to 5'-dA•, whereas for the second S-insertion reaction, a C8 radical intermediate was formed with a rate-limiting barrier of 71 kJ/mol.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 23%
Professor > Associate Professor 4 18%
Unspecified 3 14%
Researcher 2 9%
Lecturer 1 5%
Other 4 18%
Unknown 3 14%
Readers by discipline Count As %
Chemistry 6 27%
Biochemistry, Genetics and Molecular Biology 4 18%
Unspecified 3 14%
Agricultural and Biological Sciences 3 14%
Materials Science 1 5%
Other 0 0%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2017.
All research outputs
#19,237,853
of 23,842,189 outputs
Outputs from JBIC Journal of Biological Inorganic Chemistry
#532
of 664 outputs
Outputs of similar age
#332,246
of 443,758 outputs
Outputs of similar age from JBIC Journal of Biological Inorganic Chemistry
#6
of 11 outputs
Altmetric has tracked 23,842,189 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 664 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,758 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.